Environmental Studies Relative to Potential Sand Mining in the Vicinity of the City of Virginia Beach, Virginia

Part 1: Benthic Habitats and Biological Resources Off the Virginia Coast 1996 and 1997

Final Report

January 1998

Authors:

G. R. Cutter, JrR. J. DiazVirginia Institute of Marine Science

Project Manager:

Carl H. Hobbs, III

Virginia Institute of Marine Science

Prepared under MMS Cooperative Agreement 14-35-0001-3087 through Virginia Institute of Marine Science of the College of William & Mary

DISCLAIMER

This report has been reviewed by the Minerals Management Service and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Benthic habitats and biological resources off the Virginia coast 1996 and 1997

Introduction

The issues of coastline protection have become increasingly critical as erosion and coastal sediment transport have significantly altered or even eliminated ecologically and recreationally important coastal habitats. Increased public use of beaches, development of coastal lands, and preservation of the limited and sensitive coastal ecosystems have all lead to the need for beach nourishment as a means of stabilization and protection. The sand resources suitable for economical beach nourishment are usually located in the near shore coastal zones adjacent to the project areas. However, ongoing and planned beach nourishment activities along the coast of Virginia required sands from federal waters beyond the three mile line. The U.S. Mineral Management Service controls these sand resources and formed Cooperative Agreement (# 14-35-001-30807), "Environmental Studies Relative to Potential Sand Mining in the Vicinity of the City of Virginia Beach, Virginia" with the Virginia Institute of Marine Science and Old Dominion University in order to assess impacts of sandmining. Task 1 of this Cooperative Agreement ("Benthic Habitat Mapping and Evaluation of Existing Benthic Resources") involved benthic surveys of the region conducted by V. I. M. S. using sediment profile imaging and bottom grab samples.

Environmental concerns which arise in connection with proposals to excavate or mine sand from those areas identified as suitable for beach nourishment focus on potential ecological impacts associated either directly or indirectly with:

1. Removal or dredging of the sand from near coastal areas

2. Placement of the sand on the beach.

The configuration and location of the borrow site and the methods of handling the dredged material can be an important determinant in the level of impact. The level of potential impact would vary as a function of the characteristics of the material to be dredged, the exposure to currents and wave action, and the benthic resources (Thompson, 1973; Tuberville and March 1982; Hobbs, et al. 1985; Schaffner and Hobbs, 1992). Of the two geographic areas of concern associated with any beach-nourishment project, the source or borrow area and the beach area being nourished, we are focusing on the offshore source or borrow sites. In particular, the three sites off of Virginia Beach (Fig. 1) that will be used to nourish Virginia coastal beaches will be studied as a model project for evaluating environmental concerns.

Benthic habitats and non-commercial biological communities offshore Virginia were surveyed 1996 and 1997 in the vicinity of potential sandmining activities, where borrow areas had been identified and in regions of possible future interest. Benthic surveys were conducted semi-annually, during which sediment profile imaging (SPI) and standard bottom photographic camera systems and Smith-MacIntyre grabs were deployed.

SPI and standard photographs allow relatively rapid determination and assessment of benthic habitat characteristics and capability for broad areal sampling coverage. Grabs allow detailed determination of benthic biological community characteristics. Together, SPI and grab sampling provide complementary data which are capable of forming the basis for resource maps. Grab data may serve as the basis for confirming inferences made about biological and physical habitat characteristics using SPI data, and SPI data may be used to

produce habitat coverage maps which should represent the potential limits of biological community manifestations.

SPI and grab data allow mapping of substrate types, biological community characteristics and functional aspects of the communities, delineation of habitat spaces, and determination of spatial heterogeneity of habitats and resources (Bonsdorff et al., 1996). Spatial and temporal patterns of habitats and community characteristics and the local and regional water flow patterns determine benthic community response to disturbance events such as sandmining, and therefore are important to the activities proposed off Virginia. This study provides determinations of benthic habitat types, spatial extent of substrate properties and habitats, benthic secondary production and biological community characteristics off the Virginia coast in and around areas where sandmining is proposed.

Study Area

The study area offshore Virginia extended from just inside the three-mile line to approximately 10 miles offshore, and from the latitude of the southern shore of Chesapeake Bay mouth (36.925° N) to a few miles south of Sandbridge, VA (36.675° N) (Figures 1 and 2). Within this broad region, smaller regions of interest were sampled at higher spatial densities during spring and fall 1996 and fall 1997 (Figure 2). Spring and fall 1996 sampling was done using three sample grids, one off Virginia Beach (northwest grid), one to the northeast of that (northeast grid) off the Chesapeake Bay mouth, and one off Sandbridge (southern or Sandbridge grid) (Figure 3: SPI, and Figures 4- 5: grab). The entire region was sampled at lower spatial density during the spring 1997 deployment. The 1996 study areas covered approximately 30 NM², the spring 1997 study area covered approximately 60 NM², and the fall 1997 study area covered approximately 10 NM². The fall 1997 deployment involved a very high density sample coverage in the vicinity of Sandbridge shoal and the proposed borrow areas (Table 1).

Previous descriptions of the study region include geological and geotechnical descriptions of the Virginia inner continental shelf have been done by Williams (1987) Berquist and Hobbs (1988); Kimball and Dame (1989); and biological descriptions by Ranasinghe, et al. (1985), and Dauer (1981). The study areas generally encompassed various sand substrates typical of the inner continental shelf, and substrates composed of finer grain-size materials delivered to the shelf by the Chesapeake Bay excurrent plume.

Methods

Sediment Profile Imagery (SPI) and Smith-MacIntyre grabs sampling

Spatial mapping of benthic habitats was accomplished using sediment profile imaging and standard bottom photography. Three different spatial supports for the data were utilized. During 1996, three study grids were defined and divided into cells which were approximately 0.2 NM on a side. One grid extended offshore Virginia Beach and Dam Neck and was composed of 200 cells (numbered 1 - 200), one grid composed of 100 cells was located to the northeast of the Virginia Beach grid, and cells were numbered 201 - 300, and one grid was located offshore Sandbridge, in the vicinity of Sandbridge shoal and was composed of 100 cells (numbered 301 - 400) (**Figures** 3 - 4). The prefix 96 was prepended to station numbers from 1996 (96001 - 96400) for presentation of the SPI data to provide consistency with the spring 1997 sample labels (**Figures** 3 - 5, and **Table** 1). Cells called 1 - 400 from spring and fall 1996 are synonymous with cells 96001 - 96400. Although it was unfeasible to revisit the exact point sampled upon subsequent sampling, revisited sample site numbers were maintained and positions recorded. Standard deviations of positions between seasons or years at a given sample site typically were on the order of 0.0005 degree latitude or longitude.

Grids were located in regions where sandmining activities were either planned (Sandbridge shoal area) or likely because of nearby localities (Virginia Beach, VA). Grids were composed of regularly spaced cell rows whose nearshore boundaries paralleled the Virginia Coast. Ten cells were defined for each cell row west to east across each 1996 grid. Because of the shape and arrangement of the grids, 1996 SPI samples were separated

east to west neighbor by approximately 0.4 NM, northwest to southeast neighbor by approximately 0.25 NM, and northeast to southwest neighbor by approximately 0.2 NM.

The spring 1996 sampling cruise began May 14, 1996 upon the R/V Bay Eagle (V.I.M.S) and was halted by weather May 15, 1996. Completion of the spring 1996 sampling effort occurred aboard the R/V Bay Eagle (V.I.M.S), June 4 - 7, 1996. The fall 1996 cruise began October 21-22 aboard the R/V Langley (V.I.M.S) and November 4 - 6, 1996 aboard the R/V Bay Eagle.

A broadly spaced sample coverage was implemented for the spring 1997 deployment. A single staggered grid extending from Cape Henry to south of Sandbridge, Virginia was divided into grid cells measuring 1 NM per side. SPI samples were taken at each grid cell centroid (**Figure** 6), and grab samples were taken at a random subset of the stations, in addition to revisited locations sampled 1996 (**Figure** 7). Several stations from the 1996 survey were revisited during the spring 1997 deployment, and SPI and grab samples were taken. The spring 1997 cruise occurred June 16 - 19, 1997 aboard the R/V Bay Eagle.

Fall 1997 sampling was concentrated on the proposed borrow areas in the vicinity of Sandbridge shoal. Borrow Areas A to the south and B to the north coincided with the crest of Sandbridge shoal (**Figure** 8). SPI samples were taken at six stations from eight north to south transects crossing or nearby Borrow Area A, and from several points along three transects which crossed into Borrow Area B perpendicular to each of the sides defining B (**Figure** 9). Grab samples were taken at a random subset of the stations, in addition to revisited locations sampled 1996 and spring 1997 (**Figure** 10). Fall 1997 sampling occurred October 6 and 7, 1997 aboard the R/V Bay Eagle. **Table** 1 lists all

positions (in decimal degrees latitude and longitude) occupied during sampling and the type of sample acquired during the two year study, and **Table** 2 lists coordinates for the corners of the proposed borrow areas off Sandbridge. All samples taken in the vicinity of the proposed borrow areas 1996 and 1997 are labeled, along with the boundaries of the borrow areas, in **Figure** 11.

SPI samples were taken at points defining by the centroids of grid cells. SPI samples were taken at every other cell centroid point and were staggered from row to row, odd numbered cells visited one row, even numbered cells the next. At each station (grid cell centroid), the SPI camera system was deployed twice. If there was uncertainty about camera function or success, additional drops were made. During the spring 1996 cruise a Benthos model 3731 sediment profiling camera was used until it malfunctioned. From then on and throughout the next three cruises, a Hulcher model Minnie sediment profiling camera was used attached to a Benthos stainless steel frame. After deployment, depth of prism penetration and frame count was recorded. Camera tests were done periodically to ensure proper function. 350 pounds of lead and steel were used to weight the camera prism during May 14 and 15, and 450 pounds of lead and steel were used for all of the subsequent deployments. Color slide film (Fujichrome 100 professional) was used in the cameras.

Smith-MacIntyre grabs were taken from randomly selected cells from each grid, following a stratified random sampling design. 150 pounds of lead were used to weight the grab in order to produce consistently deep bites into the bottom. Grabs were only accepted if over half the volume of the grab was filled with sediment and the sediment surface was preserved intact. Grab success rate was high, confounded only when large

gravel or intact shells wedged the grab jaws open. The sediment surface of these inner shelf sands and muds was preserved very well by the grab.

The top millimeter of sediment in grab samples from spring and fall 1996 were scraped off using a flat blade, and stained and refrigerated for analysis of living foraminifera and ostracoda (Cronin, et al. 1998). Subcores (circular 10 cm diameter and 10 to 15 cm deep) were also taken from 1996 grab samples, and preserved in formalin for later analysis of meiofaunal and macrofaunal communities. The rest of the volume from 1996 grab samples and all the volume from 1997 grab samples were washed upon 500 μ m sieves aboard the vessel just after they were collected. Residue upon each sieve was stored in a cloth bag and preserved in 10% formalin solution and contained in 5 gal. buckets for transport to the laboratory.

Laboratory processing and analyses

Sediment profile images were analyzed by visual counts and measures of sedimentary and biogenic features in images projected upon a calibrated grid.

Measurements were made of SPI prism penetration depth (PEN), average depth of the apparent color redox potential discontinuity (RPD), sediment surface relief (Sed. Rel.), relief type, sediment type, epifaunal presence and type, presence of tubes at the sediment-water interface, amount of biogenic shell material present; number, type and depth of infauna visible; number, depth and type of water filled infaunal feeding voids present (whether surrounded by anoxic or oxidized sediments); number and depth of gas voids present; and number and type of infaunal burrow structures present (Tables 3 - 6). Notes were also made concerning any unusual features encountered during SPI analysis. Details

on analyses and more extensive description of SPI parameters may be found in Rhoads and Germano (1982) and in Diaz and Schaffner (1988).

SPI parameter determination and delineation of habitats have been shown effective and comparable to sediment core sample data habitat delineation (Bonsdorff, et al., 1996) when samples have come from widely varying habitats and distinct geomorphic regions. Mapping the individual SPI parameters as well as biological community characteristics and production for this study was done for the inner shelf, allowing comparisons of SPI - grab delineation capabilities within a relatively uniform geomorphologic region. For habitat mapping, SPI feature types were designated biological or physical if features from either origin composed most of the SPI image. If both feature types were present in approximately equal amounts, feature type was designated combination.

In the laboratory, grab samples were processed to obtain secondary production estimates and organismal densities and biomasses. Organisms were sorted into major taxa and enumerated. Samples which retained a large amount of sand which would not pass through 500 µm sieves were elutriated and the organisms then extracted for sorting. Processing for secondary production calculations involved resieving the sorted taxa through a series of sieve sizes (6.3, 3.35, 2.0, 1.0, and 0.5 mm), then counting and weighing the organisms in each size fraction. Counts and biomass were converted to m⁻² by multiplying by 11.1.

Production was calculated using the technique described in Brey (1990). Total wet weight per sample taxa per size class was converted to mean individual weight per

size class using the number of individuals counted. Wet weights were converted to ashfree dry weights (AFDW) using the conversion factor of Waters (1977):

AFDW (g) = Wet Weight (g)
$$*$$
 0.152.

Combined weights from all size classes allowed determination of biomass and production for each taxa per sample. Mean individual weight and total biomass per square meter for each major taxa and size fraction allowed estimation of secondary production using the multiple regression models of Brey (1990) including different coefficients for each taxa. When very small biomasses were present, production estimates were unrealistically high due to the limited range for which Brey's (1990) model applies. Therefore if mean annual biomass was estimated to be less than 0.02 g m², the value was excluded and production was not calculated for that observation. Production estimates reported are from 1996. Calculation of production for 1997 is in progress.

Maps

Maps representative of SPI parameters, habitat types, and biological densities and secondary production estimates were produced using the SPI and grab data. For each parameter mapped, the legends are consistent between maps from different sample dates, easing comparison. Interpolation and contouring of SPI and grab data was done by an inverse distance weighted (IDW) squared, nearest 12 neighbor method using Arcview for Windows NT. For habitat maps, the IDW squared method was used, but with only one neighbor to prevent generation of apparent intermediate habitat classes by interpolation.

Results

SPI analysis

SPI analyses data for spring and fall 1996 and spring and fall 1997 sampling efforts are presented in **Tables** 3 to 6. Maps constructed using these data are addressed hereon. While most parameters for 1997 were not plotted as maps, the data are available in **Tables** 5 and 6. SPI prism penetration patterns were similar between the seasons and years. Deepest penetration depths occurred in the northwestern part of the study area. Shallowest penetrations occurred in the northeastern part of the study area. Patches of shallow penetration were observed in the vicinity of Sandbridge shoal, and patches of deep penetration were observed just to the east and west of the shoal (Figures 12 - 14). Spring 1996 SPI prism penetration depth ranged from < 5 to > 20 cm. Deepest penetrations (>10 to 20 cm) in the spring of 1996 were in the northwest portion of the study area (**Figure** 12). Fall 1996 penetration was also deepest in the northwest part of the study region, some exceeding 20 cm (**Figure** 13), and also in parts of the study area off Sandbridge. Spring 1997 sampling revealed a similar pattern, with deep penetration in the northwest, shallow penetration in the northeast, and patches of deep and shallow penetration off Sandbridge (Figure 14). SPI prism penetration within the proposed borrow areas ranged was generally within the 5 to 10 cm range (**Figures** 13 and 14).

Sediment-water interface (SWI) relief (surface relief) ranged from < 1 to 10 cm from spring 1996 through spring 1997 (**Figure**s 15 - 17). Lowest relief (smoothest surfaces) was observed in the study area off Sandbridge, just inshore from Sandbridge shoal and the proposed borrow areas, and in the northeastern part of the study area, as well as in patches within the study region off Virginia Beach. Highest sediment-water

interface relief was observed in the northwest portion of the study area and off Sandbridge within borrow area A (**Figure** 16). Most of the images in the study area from spring and fall 1996 and spring 1997 revealed SWI relief of 1 to 2 cm. The area between the northwest and northeast parts of the 1996 study area was interpolated to have relief from 1 to 2 cm using spring 1996 data, and 2 to 4 cm using fall 1996 data (**Figure**s 15 - 16). The points sampled spring 1996 and 1997 within this zone revealed lower relief (< 1 cm) suggesting that the high relief observed from cell 281 fall 1996 was a temporary artifact.

The apparent color redox potential discontinuity (RPD) layer depth ranged from < 1 to > 10 cm during spring and fall 1996 (**Figures** 18 - 19). RPD depth measurements from 1997 samples has not yet been completed. Spring 1996 sampling revealed a large area off Virginia Beach and a point within borrow area B with RPD depths of 5 to 10 cm. In the northeastern part of the study area, RPD depths were nearly all between 1 to 3 cm. Shallowest RPD depths were observed off Sandbridge, just inshore of Sandbridge shoal and the proposed borrow areas (**Figure** 18). Fall 1996 sampling revealed slightly lower RPD depths in the northwestern part of the study area, off Virginia Beach, and similar RPD depths in the northeast. RPD depths in the study area off Sandbridge were deepest fall 1996, most between 5 to 10 cm and one > 10 cm (**Figure** 19).

Infaunal tubes were present in many of the SPI images during spring 1996, with highest numbers of tubes in the northwestern part of the study area (> 25), and very few in most of the northeastern-most part of the study area (**Figure** 20), except at a few stations where there were high numbers (10 to 25). Spring 1997 SPI images revealed lower numbers of tubes over most of the study area. Most of the images had no tubes visible at the sediment-water interface (**Figure** 21). There were some tubes visible in images from

the northwestern part of the 1997 study area, as seen also in spring 1996. However, the high numbers observed in the northwestern part of the 1996 study area were not apparent in spring 1997 images. The absence of tubes in numbers > 25 per SPI image from spring 1997 may indicate changes in community composition or limited spatial patches dominated by tube-dwelling infauna, perhaps not as extensive in coverage as suggested by the interpolation displayed in **Figure** 20. Most of the tube building infauna were polychaetes, from the families Maldanidae (*Clymenella*, *Asychis*, *Euclymene*, *Maldanopsis*), Ampharetidae (*Asabellides oculata*), or Onuphidae (*Diopatra cuprea*). Species were confirmed by grab samples, but tube structures were usually distinct enough to discern tube types in SPI images. Grab samples produced many other species as well which were not detected in SPI images (See section on grab sample analysis below).

Sediment types in the study region were primarily sands from -1 to 4 phi, but some muds (4 to 8 phi) were also present. Muds were prevalent in the northwestern part of the study area and in patches across the region (**Figure** 22). The muds were typically silt to clayey silt, and sands ranged from very fine sands to coarse sands and granule (**Figure** 23). Fine sands (2 to 3 phi) were most common throughout the study area. The spring 1997 sampling grid did not encounter as many silty sediment patches as the 1996 sampling. Sediment grain size and alkalinity determined from spring 1997 grab samples are listed in **Table** 7.

Habitats classifications from SPI images

The variety of sediment types and habitat types were apparent in images from spring and fall 1996 when more dense sampling grids were employed. Nine gross habitat

classes were identified from a set of sixteen habitats initially identified using 1996 SPI images. Habitat classes were labeled A - I, and are summarized in **Table** 8. SPI images representative of the nine habitat types are displayed in **Figure**s 24 - 32. Habitat determinations from 1997 data are not yet complete. Habitat maps made using the nine habitat type classes reveal the diversity of bottom types across the study area encountered spring 1996 (**Figure** 33) and fall 1996 (**Figure** 34).

Seven of the habitat types were identified in SPI images from spring 1996. The most common and extensive habitat types spring and fall 1996 were (class C) silty-sand to very fine sand sediments with both biological and physical characteristics, and (class D) fine sand sediments with primarily physical features (**Figure** 26). Overall, across the entire study region, 73 of the 157 cells from which determinations were made using SPI images from spring 1996 were habitat class C, and 31 were class D. Eight of the nine habitat types were identified from fall 1996 SPI images. For the entire study region, 100 of 191 cells revealed habitat class C, 39 were class D, and 28 were class F (**Table** 9). The entire grid block in the northeastern part of the study area (cells 96201 - 96300) was found to have only habitat class C (combined biological and physical fine sands) spring and fall 1996 (**Figures** 33 - 34).

Biologically dominated silts (class A) and fine sands (class E) were also present across much of the study area, though slightly fewer during fall 1996 sampling than spring 1996. Physically dominated silt sediment habitats (class B) were present only during fall 1996 at three stations off Virginia Beach. Physically dominated medium sand and shell sediments (class F) were present most in the study area off Sandbridge, and were more extensive fall 1996. Biologically dominated medium sand and shell sediment habitats

(class G) were apparent at some of the sample stations off Sandbridge, just outside the proposed borrow areas, and also at several stations in the study area off Virginia Beach. Physically dominated coarse sands to gravel sediments (class H) were encountered only off Sandbridge, just inshore of the proposed borrow areas spring and fall 1996, and at one station off Virginia Beach spring 1996. Apparently transitional substrates, composed of coarser grain-size sediments layered over finer grain-size sediments (class I) were encountered fall 1997 at three stations off Virginia Beach, and at one station off Sandbridge (**Figures** 33 - 34).

Grouping the habitats in terms of dominance by biological or physical features, or combined interaction of biological and physical features, without respect to sediment type reveals broad and apparently continuous regions of either physically or biologically dominated substrates spring 1996 (**Figure** 35). During spring 1996, biologically dominated habitats were prevalent in the northwestern part of the study area off Virginia Beach, physically dominated habitats are prevalent in the vicinity of the proposed borrow areas off Sandbridge, and combination habitats were interspersed in those two regions and ubiquitous in the northeastern part of the study area (**Figure** 35). Similarly, fall 1996 SPI images revealed biologically dominated habitats in the northwest part of the study area and in the study area off Sandbridge, however in apparently non-continuous, smaller patches than during spring 1996 (**Figure** 36). Habitats with combined biological and physical interaction were present in the study areas off Virginia Beach and Sandbridge and pervasive across the northeastern grid. **Table** 10 lists positions, cell numbers and habitat classifications.

Of the seven habitat types identified using SPI images in the northwest sample grid off Virginia Beach spring and fall 1996, four were biologically dominated or combination biological/physical substrates, and three were biologically dominated or combination during fall 1996. In the northeastern sample grid 1996, only one habitat type was identified during spring or fall, and that had combination biological and physical features. In the sample grid off Sandbridge, five habitats were identified spring 1996, and of those two were biologically dominated or combination. Similarly, in fall 1996, in the sample grid off Sandbridge, two of seven habitats identified were biologically dominated or combination.

Secondary production

Total benthic secondary production calculated using the technique of Brey (1990) ranged from < 1 g m⁻² yr⁻¹ to > 50 g m⁻² yr⁻¹ (**Figure** 37). Low (< 5 g m⁻² yr⁻¹) to high (> 25 g m⁻² yr⁻¹) production was observed in the northwestern part of the 1996 study area off Virginia Beach. Low to moderate (5 to 25 g m⁻² yr⁻¹) production was found in the northeastern sample grid and in the study area off Sandbridge in the vicinity of the proposed borrow areas. The high total production values correspond to high combined production by molluscs (**Figure** 38), and annelids (**Figure** 39), and to a lesser degree by crustaceans (**Figure** 40). Mollusc production was high at one site in the northwestern sample grid off Virginia Beach, and low to moderate throughout the rest of the study area (**Figure** 38). Annelid production was high at a site just west of where mollusc production was highest, in the central part of the northwestern sample grid off Virginia Beach, and was low to moderate elsewhere (**Figure** 39). Crustacean production was low throughout

the study area, but relatively higher in the northwest sample grid and at one site in the study area off Sandbridge, within proposed borrow area B (**Figure** 40). Miscellaneous taxa, composed primarily of echinoderms and cnidarians, had very low production across the area. However, some patches of relatively higher production by miscellaneous taxa corresponded with higher production by molluscs, annelids and crustaceans (**Figure** 41).

Sandbridge study area analysis, including proposed borrow areas

Habitat types in the study area off Sandbridge were mostly physically dominated fine to medium sands along Sandbridge shoal crest in spring 1996 (**Figure** 42) and combination biological-physical silty sands or biologically dominated silts around the shoal. Habitats were similarly distributed fall 1996 (**Figure** 43) but slightly fewer biologically dominated muds were encountered, one sample revealed silt in part of borrow area A. Another site had sediments which had apparently undergone recent transition, with a coarser grain-size sediment layer overlain upon clayey silt (**Figure** 43). Both spring and fall 1996 SPI images reveal primarily physically dominated habitats throughout most of borrow area B, and approximately half of borrow area A (**Figures** 44 - 45). Biologically moderated habitats were found to the west (inshore), east, and south of the proposed borrow area (**Figures** 44 - 45).

Total community secondary production from 1996 within the study area off Sandbridge was low to moderate, and relatively highest in at one site near the southern boundary of borrow area A and to the west of borrow area A (**Figure** 46 with cell numbers labelled, and **Figure** 47). Production by molluscs was very low to low throughout the study area off Sandbridge, except at a station to the west where

production was moderate (**Figure** 48). Polychaete production in the study area off Sandbridge was very low to low. Lowest polychaete production was found in borrow area B (**Figure** 49). Crustacean production was very low (< 1 g m⁻² yr⁻¹) at all except three stations where production was low (1 - 5 g m⁻² yr⁻¹) in the study area off Sandbridge, 1996 (**Figure** 50).

Total infaunal densities ranged from < 100 to > 2000 m² in the study area off Sandbridge. Highest overall densities (> 2000 m²) were found to the west and in the center of borrow area B (**Figure** 51). Lowest overall densities were observed in samples taken just to the south and west of the sample with high density in the center of borrow area B. Molluscs were found in highest densities at one cell to the west of the proposed borrow areas, and were found in higher densities inshore of the borrow areas within the study area off Sandbridge (**Figure** 52). Polychaete densities were high inshore of the proposed borrow areas and at one cell in the center of borrow area B and one cell to the east of borrow area A (**Figure** 53). Crustacean densities in the study area off Sandbridge, 1996 were relatively high (> 1000 m²) in borrow area B, and low to moderate elsewhere (**Figure** 54). Comparisons of apparent general habitat type determined using SPI to benthic secondary production (**Figure** 55) and faunal densities (**Figure** 56) reveal that total community production and densities for all taxa agree fairly well with the habitat delineations made using SPI.

Grab sample analysis

Benthic Community Species Composition

At total of 119 taxa were identified from 13 of the Smith-MacIntrye grabs collected in 1996 (**Tables** 11 - 12). Half of the top 14 taxa in terms of occurance and abundance were polychaetes. The other half were one representitive each from the amphiods, decapods, bivalves, nemerteans, tanaids, echniderms, and chordates (**Table** 13). The distribution of species among the taxa was similar to other benthic studies from the region. **Table** 14 compares our study to that of Dauer (1981). While Dauer's data are for about 3.5 times as much bottom area as ours, the total numbers of species from both studies are close. Dauer's (1981) survey of the benthos at the proposed Norfolk District COE open water disposal site, about 15 miles East of the entrance to Chesapeake Bay is the closest historical data set to our study area. The Dauer study was at the same latitude as the northernmost extent of our study area, and about 8 miles to the east, but was at similar sediment types and depths.

Overall, the community composition within our study area was typical for sandy shallow continental shelf habitats. Detailed studies by Boesch (1979) off the coasts of New Jersey and Maryland, Maurer et al. (1976) off Delaware, and Day et al. (1971) off North Carolina reported simialar species composition for similiar depths and sediment types. While there were many differences in the species composition, several species and taxa were consistently reported by these studies, such as, *Spiophanes bombyx*, various *Nephtys* species, *Tellina agilis*, *Magelona rosea*, *Aricidea* spp., *Spio setosa*, *Nassarius trivittatus*, *Ampelicsa verrilli*, *Unciola irrorata*, and *Mellita quinquiesperforata*. All of these are know to be high salinity sand species.

Benthic Community Size Spectra

The size distribution of the benthos, both biomass and number of individuals, is an important factor in determining the potential food resources available to bottom feeding fish and crabs (Diaz and Schaffner 1990, Edgar 1990) and was the data used in calculation of secondary production. Size spectra of the benthos (Class intervals of 0.5 to 0.9, 1.0 to 1.9, 2.0 to 3.3, >6.3 mm) were determined from the grab samples and followed a pattern typical for marine communities, where the highest biomass was in the larger size classes and highest number of individuals was in the smaller size classes (**Figures** 57 - 58). Overall for June and November 1996 data, 15 % of all individuals and 81 % of the wet weight biomass were in the larger biomass size fractions, 3.35 and 6.3 mm size classes. The taxonomic composition of the larger biomass size fractions spanned a broad range with only the total biomass of anemones and amphipods being less than 50 % in the larger size fractions (**Table** 15). In terms of numbers, only echinoderms, bivalves, and chordates had 50 % or greater of their total abundance in the larger size fractions (**Table** 15).

Overall, total biomass about doubled between June to November, going from 4.1 to 7.7 g wet wt m² (**Table** 16). Annelids, the dominant taxonomic group in biomass, numbers and trophically, are typical of this trend and averaged about 13 g wet wt m² in June and 28 in November. The modal biomass size fraction for annelids in both June and November was 3.35 mm. Maldanid and Nephtid polychaetes were the predominant families that accounted for most of the 3.35 mm size fraction biomass.

Total abundance declined from June to November being 2350 and 1850 ind. m2, respectively. Again, annelids were typical of this trend declining from 960 to 910 ind. m2 with the modal size fraction being 1.0 mm (**Table** 16). This increase in biomass and

decline in abundance are likely due to post settlement seasonal growth and mortality of macrofauna.

Discussion

Deep SPI prism penetrations in the northwestern portion of the study area coincided with the Chesapeake Bay plume deposits, composed of finer grain-size sediments. Deep prism penetration in other parts of the study area appeared to coincide with the depositional environments induced by large-scale bottom features such as Sandbridge shoal. The shoal consisted of coarsest sediments along the crest and was surrounded by a rim or at least patches of finer sediments, silts to clayey silts. Biological activity and numbers of macro-infaunal organisms and structures were high in these finer sediments, as apparent in the sediment profile images (**Figure** 45) and in the grab samples (**Figure** 51).

Relief was generally caused by sediment bedforms, primarily smooth-crested wave-orbital ripples. Bedform heights were observed to be 1 to 2 cm and as demonstrated by the surface relief, or SWI relief, measurements. Larger bedforms were observed in the study area off Sandbridge, within borrow area A, and in the northern part of the study region off Virginia Beach.

Habitat mapping using SPI and sediment grab sampling was very effective for covering large regions such as the study areas off Virginia Beach. Relative resource evaluations would then be made using parameters measured from SPI and grab samples. This is in contrast to indices, such as the organism-sediment index (OSI) (Rhoads and Germano 1982) which includes only certain SPI data, and benthic index of biotic integrity (B-IBI) (Weisberg, et al. 1997) derived only from grab data. Such indices are of questionable value for assessing resources over broad areas. The OSI, for instance, relies upon the RPD depth without considering the sediment type or grain size. RPD depth,

however, may be influenced significantly by grain size. Thus OSI may be useful for comparing habitat properties within a relatively uniform sedimentary environment, but for comparison across sediment type regions, it is confounded by not accounting for collinearities in habitat parameters. Thus, interpretation of the SPI and grab data is necessary to provide a habitat resource value assessment, unless a new index is developed, or one is modified, which accounts for inter-regional parameter behavior.

Using only two parameters determined from SPI analysis, a rapid assessment of gross habitat type can be made. Using just an assessment of sediment grain size class (coarse to very fine sand, coarse to fine silt, and clay, and mixtures) and determination of prevalence of biological features or physical structures provides a simple method for initial delineation of benthic habitats. These may be further refined by determination of dominant fauna or surficial geological characteristics, both available using SPI data or inferences about features present in SPI images confirmed by grab data.

Benthic secondary production for 1996 was high (> 25 g m⁻² yr⁻¹) in the northern portion of the northwest sample grid off Virginia Beach and low (< 5 g m⁻² yr⁻¹) to moderate (5 - 25 g m⁻² yr⁻¹) throughout the rest of the study area (**Figure** 37). In the northwest sample grid, off Virginia Beach, the high production calculated using grab sample data corresponded to regions which were identified using SPI images as biologically dominated fine sand during spring 1996 (**Figure** 33), but as physically dominated fine sand fall 1996 (**Figure** 34). Habitats were identified as physically dominated at some locations using SPI images, but relatively high production was found using grab data. In some sediments, especially non-cohesive sands, biological features may not persist, and fauna may be inconspicuous.

Therefore, dependent upon substrate characteristics, more or less effort with the different sampling techniques may be necessary. Accurate habitat mapping then may require initial reconaissance and subsequent allocation of sampling effort. Some habitat determinations using SPI may not have agreed with observed high or low production or biological densities because of small spatial-scale variabilities since grabs were not necessarily acquired on the exact spot where images were taken. General agreement is good between the two sampling techniques for gross characterizations of habitat and for biological resource assessment. The agreement between the interpolations made using SPI and grab sampling is encouraging, especially considering that each was done upon a different support, the sample spatial structure.

Discriminant analysis using SPI and grab data should reveal whether the habitat determinations convey objective discretions. Evaluation of the pertinence of the 1996 determinations will be used to delineate habitats using 1997 data. In general, if SPI can be used to reliably relate habitat characteristics which allow prediction of benthic community attributes, then statistical spatial models may be constructed for habitats and resources with efficiency. Refined SPI and grab sampling strategies may accomplish regional benthic resource assessment and mapping with a reasonable effort.

Where persistence of SPI features would be confounded by lack of sediment cohesivity, we expect that habitat delineations will underestimate community attribute variability. However, SPI and grab data and maps for the region off the Virginia coast elucidate an overall more complex benthic system than was expected based upon the generalized descriptions of previous studies for the inner continental shelf off Virginia.

References

- Berquist, C. R. Jr., and C. H. Hobbs. 1988. Study of economic heavy minerals of the Virginia inner continental shelf. Virginia Division of Mineral Resources Open File Report 88-4, 149 pp.
- Boesch, D.F. 1979. Benthic ecological studies: macrobenthos. Special Rpt. Appl. Mar. Sci. Ocean Engin. No. 194, Virginia Institute of Marine Science. 301 pp.
- Bonsdorff, E., R. J. Diaz, R. Rosenberg, A. Norkko, and G. R. Cutter Jr. 1996. Characterization of soft-bottom benthic habitats of the Aland Islands, northern Baltic Sea. Mar. Ecol. Prog. Ser., 142, 235-245.
- Brey, T. 1990. Estimating productivity of macrobenthic invertebrates from biomass and mean individual weight. Meeresforsch. 32: 329-343.
- Cronin, T. M., S. Ishman, R. Wagner, and G. R. Cutter, Jr. 1998. Benthic foraminifera and osctracoda from Virginia Continental Shelf. Final Report to the Minerals Management Service, Office of International Activities and Marine Minerals Agreement No. 14-35-0001-30807.
- Day, J.H., J.G. Field and M.P. Mongomery. 1971. The use of numerical methods to determine the distribution of the benthic fuana across the continental shelf of North Carolina. J. Anim. Ecol. 40:93-125.
- Diaz, R. J., and L. C. Schaffner. 1988. Comparison of sediment landscapes in Chesapeake Bay as seen by surface and profile imaging; in: Understanding the estuary: Advances in Chesapeake Bay research. Proceedings of a conference. 29-31 March 1988. Baltimore Maryland. Chesapeake Research Consortium Publication 129. CBP/TRS 24/88.
- Diaz, R.J. and L.C. Schaffner. 1990. The functional role of estuarine benthos. p. 25-56.
 In: M. Haire and E.C. Krome (eds.). Perspectives on the Chesapeake Bay, 1990.
 Advances in estuarine sciences. Chesapeake Research Consortium, Gloucester Pt., Virginia. Rpt. No. CBP/TRS41/90.
- Dauer, D.M. 1981. Benthic monitoring of the Norfolk disoposal site. Appendix A, Chapter III, An assessment of the ecological impact of open ocean disposal of materials dredged from a highly industrialized estuary. Old Dominion University, Final EIS Norfolk Disposal Site, to the Norfolk District COE. pp. A21-A147.
- Edgar, G. J. 1990. The use of the size structure of benthic macrofaunal communities to estimate faunal biomass and secondary production. J. Exp. Mar. Biol. Ecol. 137: 195-214.

- Kimball, S, and J. K. Dame. 1989. Geotechnical evaluation of sand resources on the inner shelf of southern Virginia. Final report to the City of Virginia Beach. Two volumes. Virginia Institute of Marine Science, Gloucester Point, Virginia.
- Maurer, D., P. Kinner, W. Leatham, and L. Watling. 1976. Benthic faunal assemblages off the Delaware peninsula. Est. Coast. Mar. Sci. 4:163-177.
- Ranasinghe, J. A, W. T. Harlan, and D. M. Dauer. 1985. Macrobenthic communities of the Dam Neck disposal site. Old Dominion University Final Report for the Department of the Army, Norfolk district, Corps of Engineers, Norfolk, Virginia.
- Rhoads, D.C., and J. D. Germano. 1982. Characterization of organism-sediment relations using sediment profile imaging: an efficient method of remote ecological monitoring of the seafloor (Remots(Trademark) system). Mar. Ecol. Prog. Ser., 8, 115-128.
- Waters, T.F. 1977. Secondary production in inland waters. Adv. Ecol. Res. 14:91-164.
- Weisberg, S.B., J.A. Ranasinghe, D.M. Dauer, L.C. Schaffner, R.J. Diaz and J.B. Frithsen. 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. Estuaries 20:149-158.
- Williams, S. J. 1987. Geologic framework and sand resources of the Quaternary deposits offshore Virginia, Cape Henry to Virginia Beach. U.S.G.S. Open File Report 87-667, 60 pp.

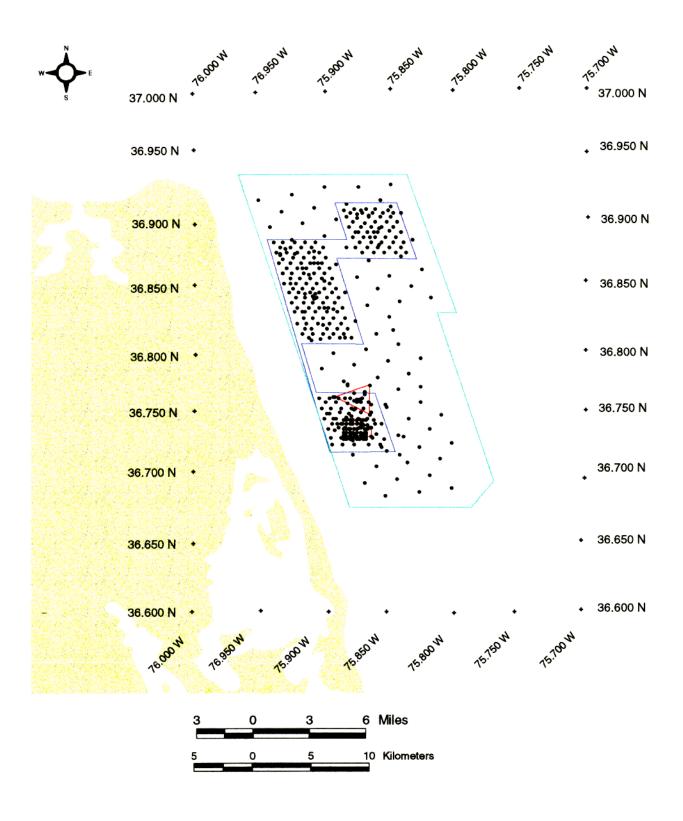


Figure 1. Benthic survey study areas off Virginia Beach 1996 and 1997 with reference grid listing latitude and longitude in decimal degrees.

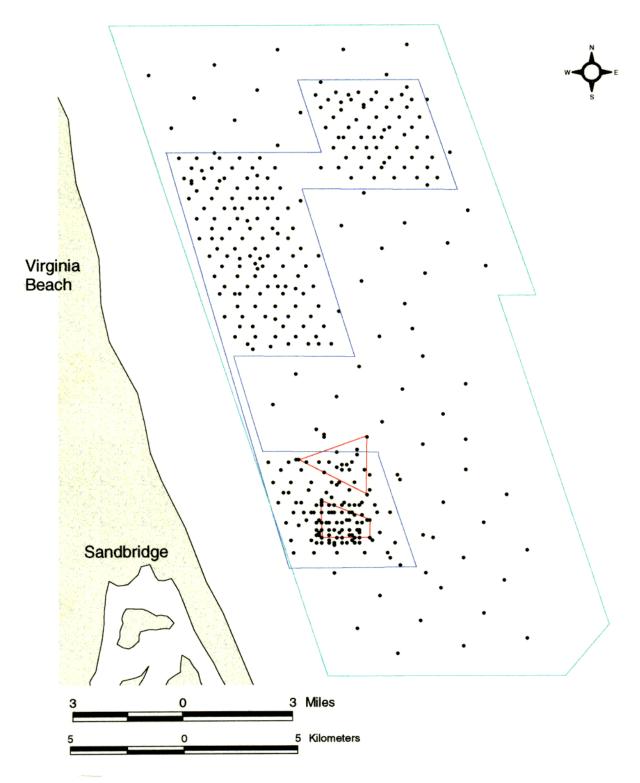


Figure 2. SPI and Smith-MacIntyre grab site locations off the Virginia coast, spring and fall 1996 and 1997. Red lines indicate proposed borrow areas A (southern) and B (northern) for sandmining, blue lines indicate limits of 1996 study region, and green lines indicate limits of 1997 study region.

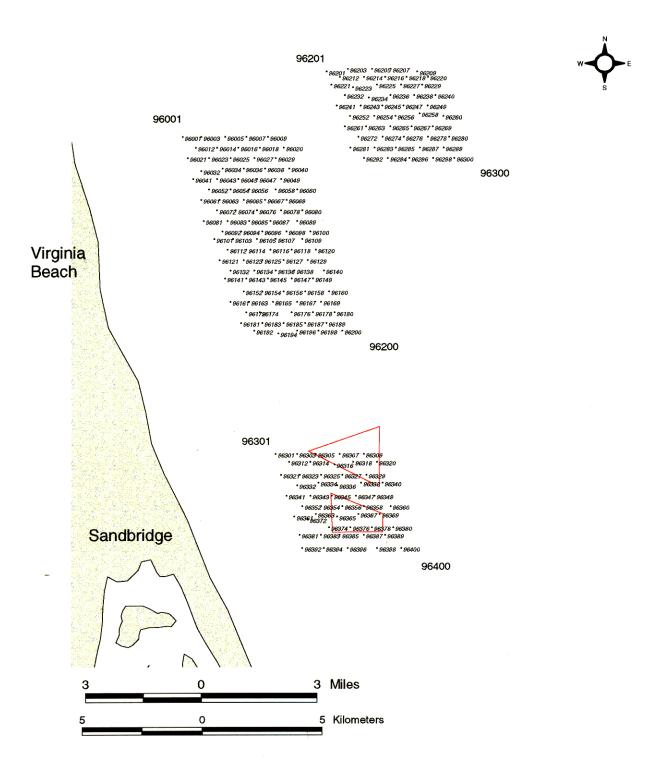


Figure 3. SPI sample site locations off the Virginia coast, spring and fall 1996.

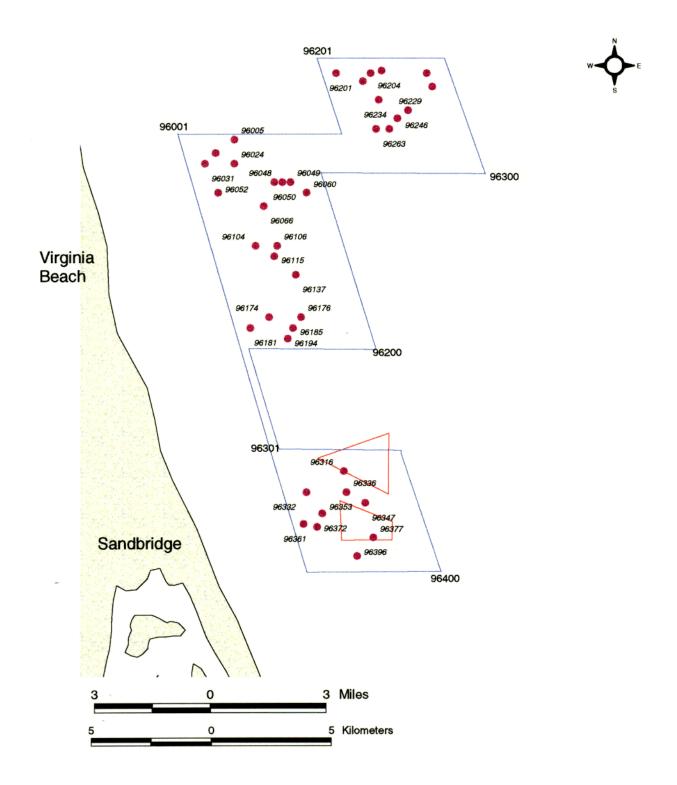


Figure 4. Smith-MacIntyre grab site locations off the Virginia coast, spring 1996.

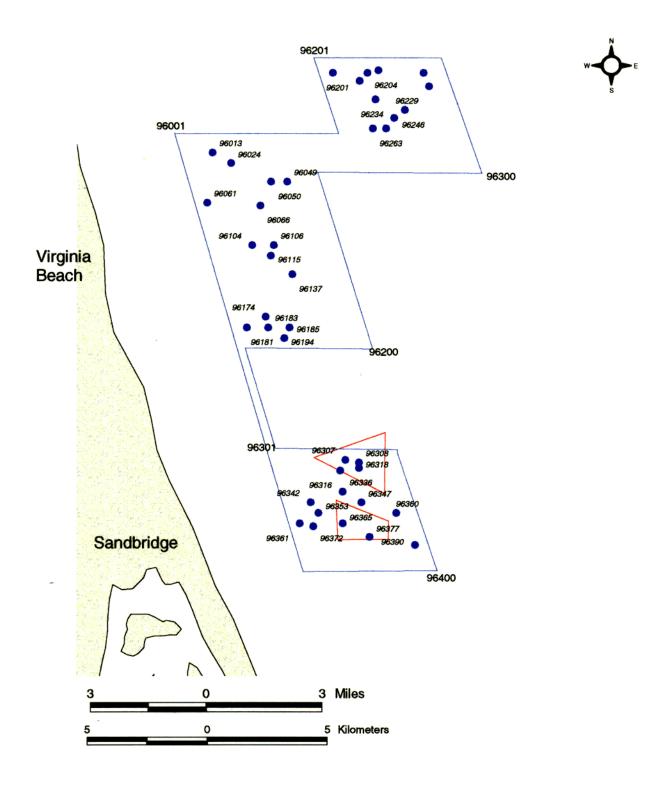


Figure 5. Smith-MacIntyre grab site locations off the Virginia coast, fall 1996.

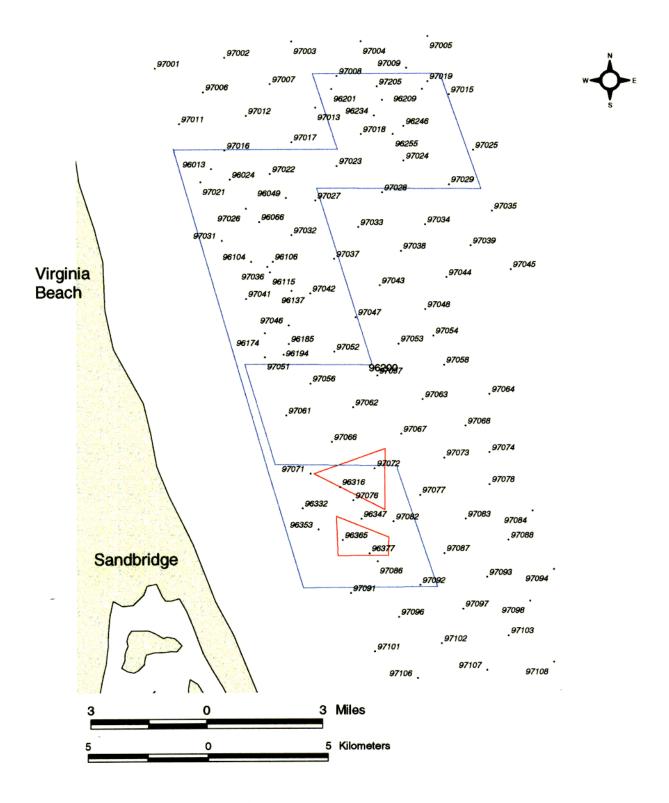


Figure 6. SPI sample site locations off the Virginia coast, spring 1997.

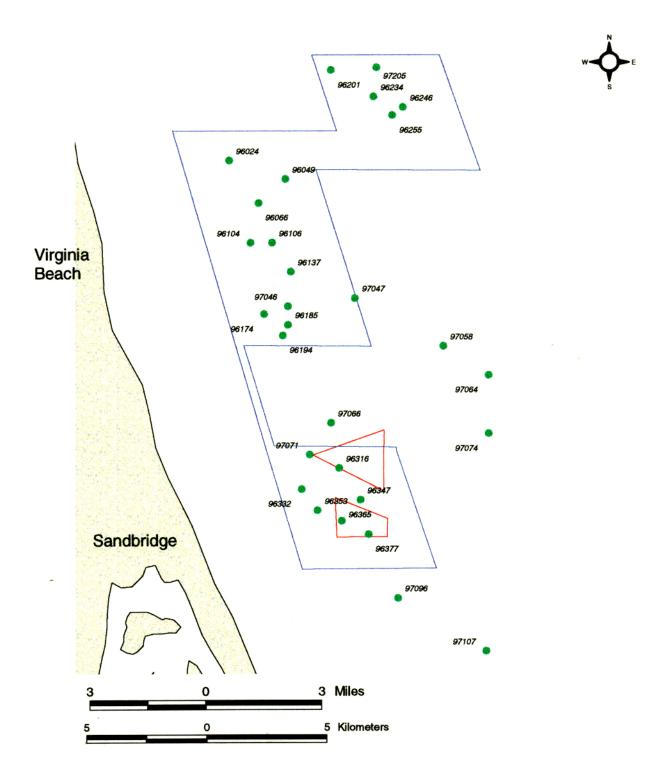


Figure 7. Smith-MacIntyre grab sample site locations off the Virginia coast, spring 1997.

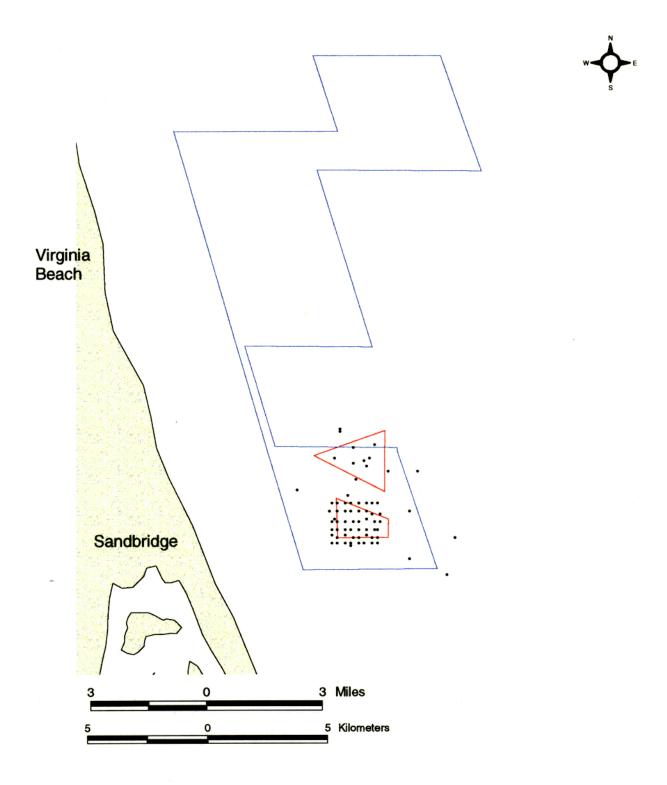
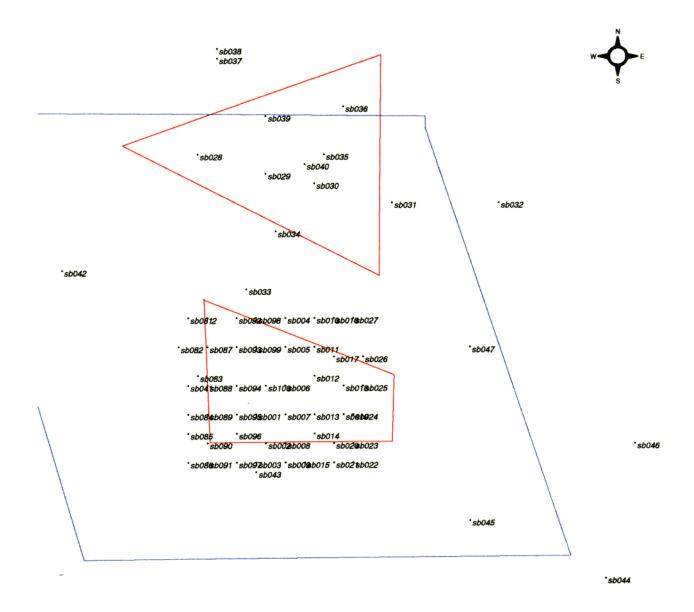



Figure 8. SPI and Smith-MacIntyre grab site locations off the Virginia coast, fall 1997 in the vicinity of Sandbridge shoal and the proposed borrow areas (red lines) for sandmining.

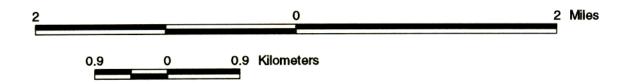
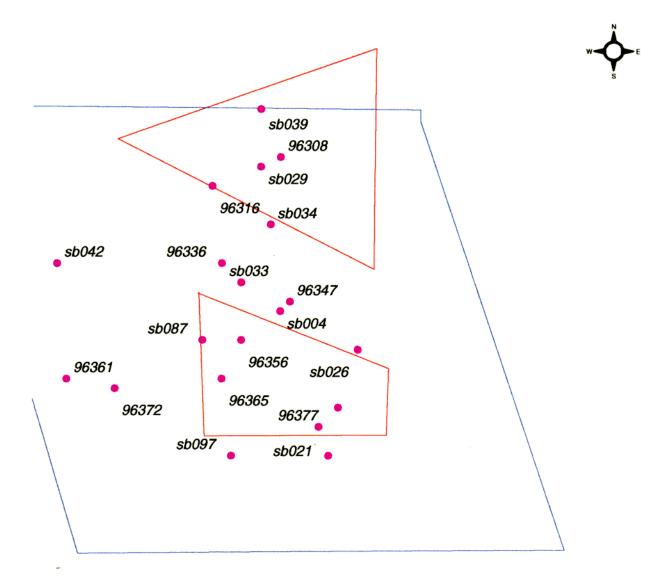



Figure 9. SPI sample site locations, fall 1997.



Figure 10. Smith-MacIntyre grab sample site locations, fall 1997.

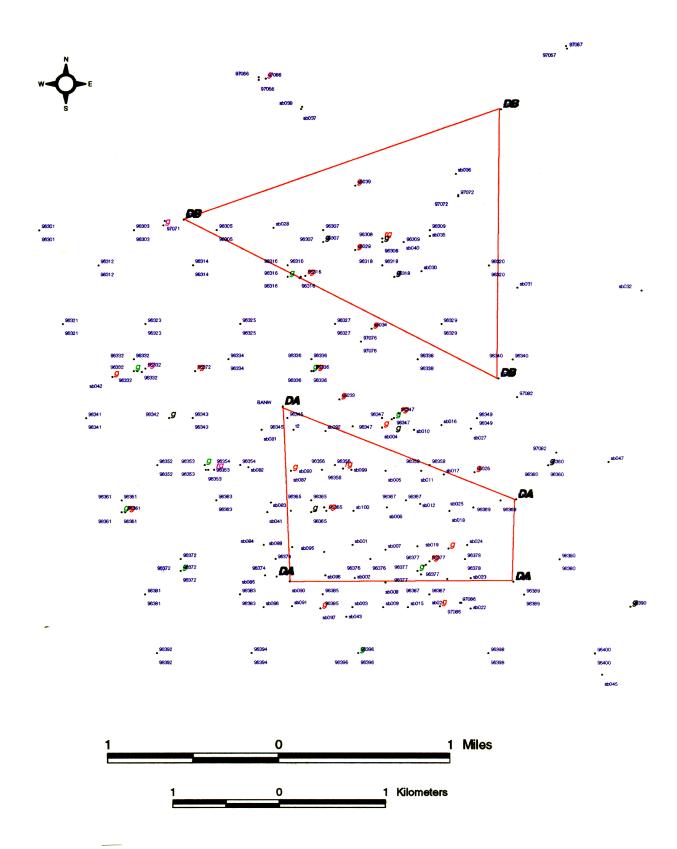


Figure 11. Sandbridge shoal region sample sites and Dredge Areas A and B (with corners marked).

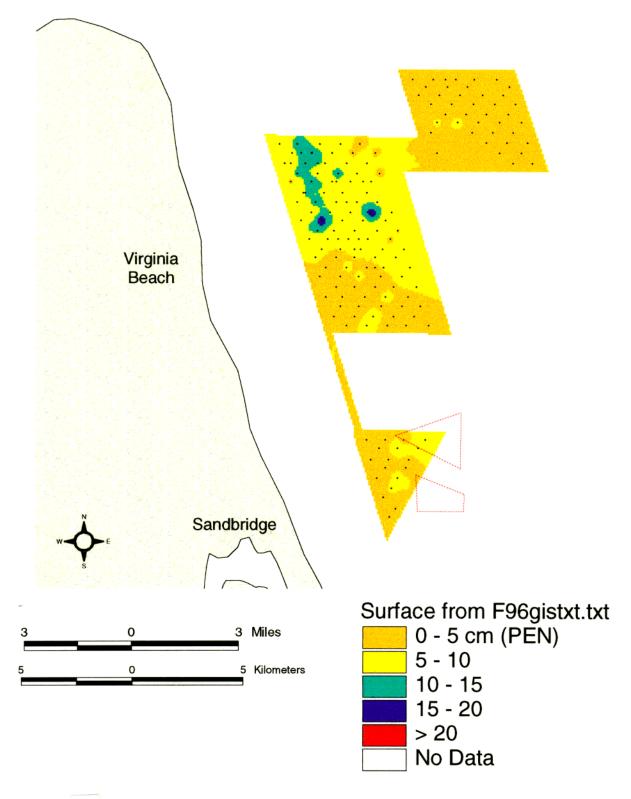


Figure 12. Spring 1996 SPI prism penetrationdepth (cm). Potential borrow areas A (southern) and B (northern) are delineated by red lines.

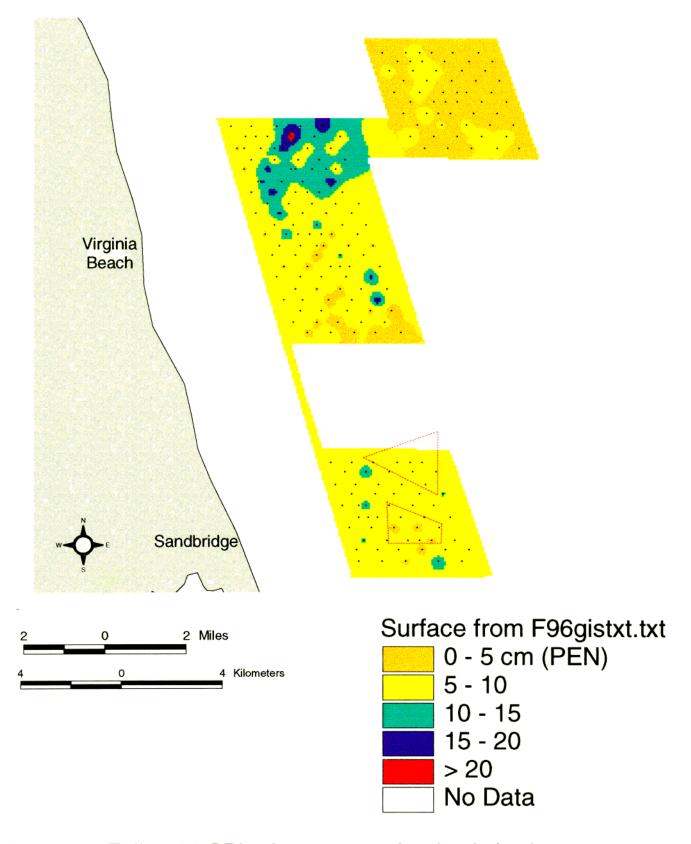


Figure 13. Fall 1996 SPI prism penetrationdepth (cm).

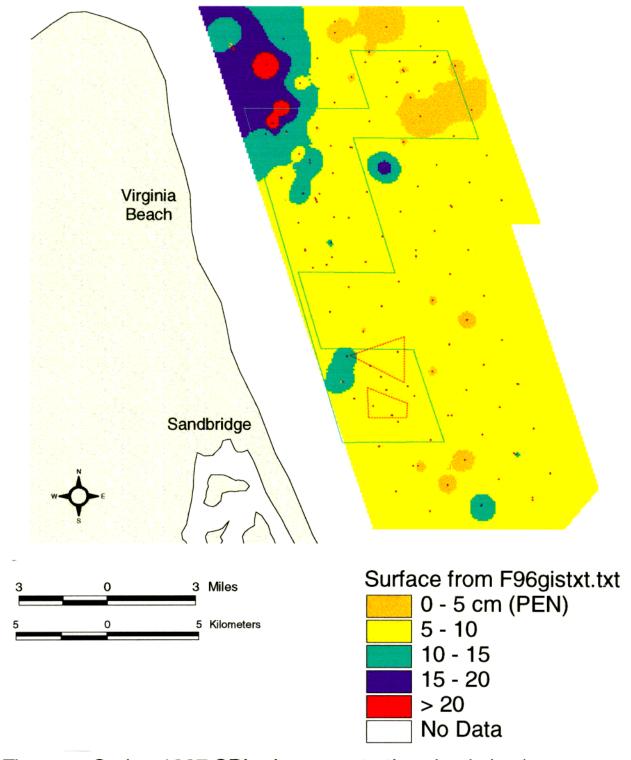


Figure 14. Spring 1997 SPI prism penetration depth (cm). 1996 study region is delineated by green line and borrow areas are delineated by red line.

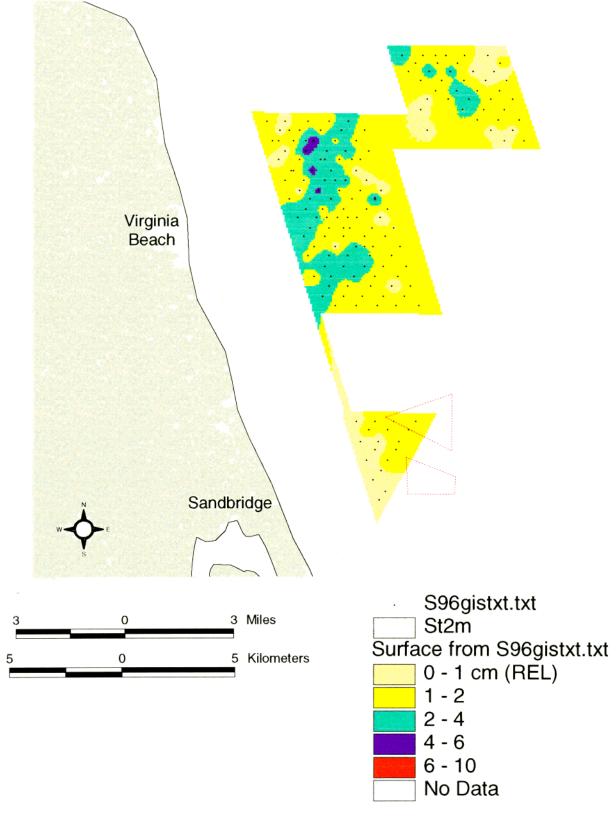


Figure 15. Spring 1996 sediment surface relief (cm) from SPI.

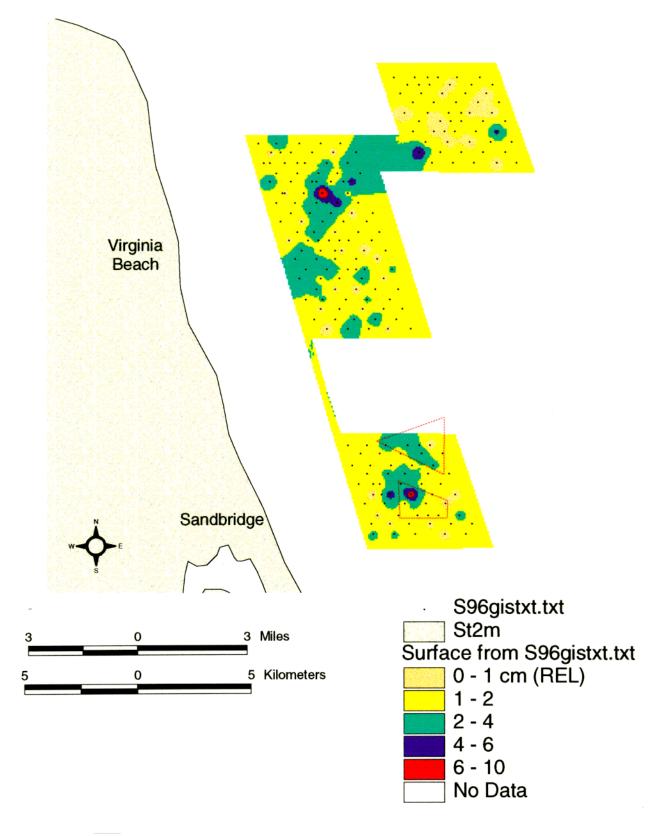


Figure 16. Fall 1996 sediment surface relief (cm) from SPI.

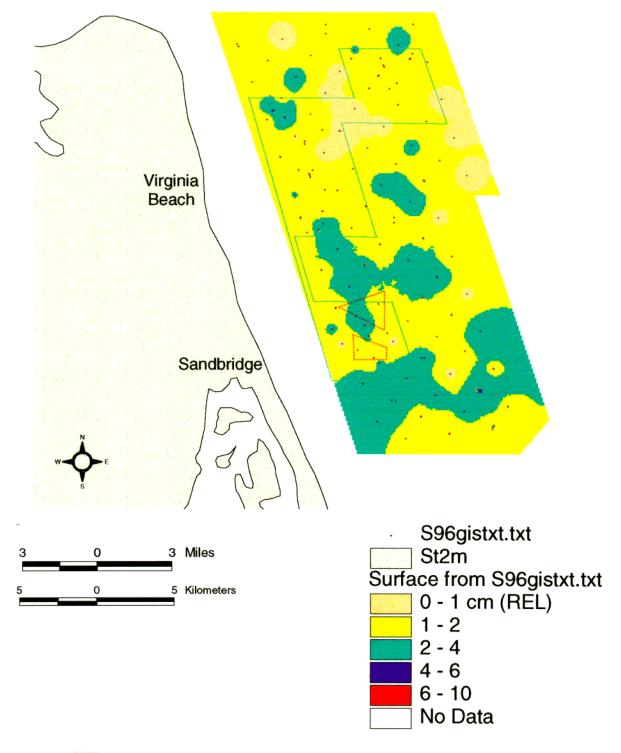


Figure 17. Spring 1997 sediment surface relief (cm) from SPI.

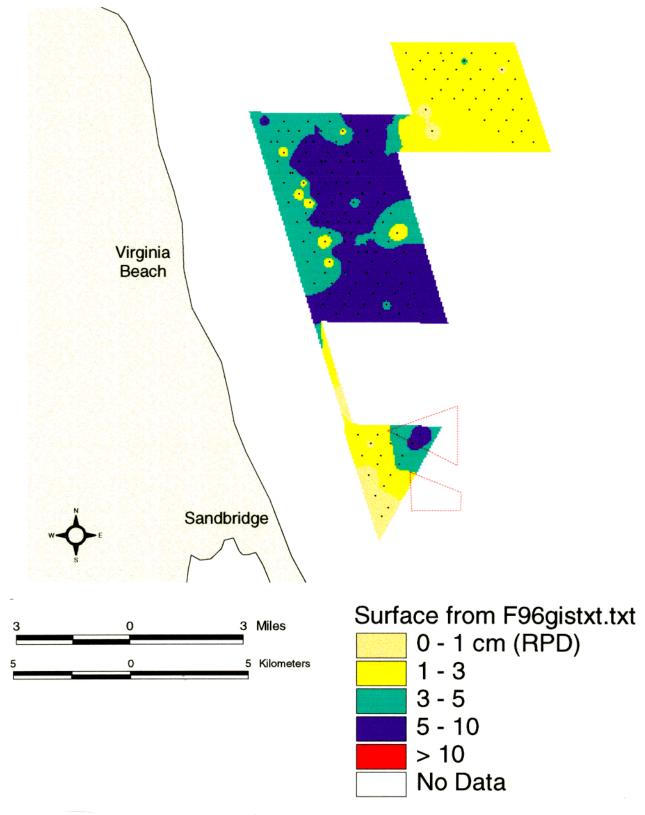


Figure 18. Spring 1996 redox potential discontinuity (RPD) layer depth (cm).

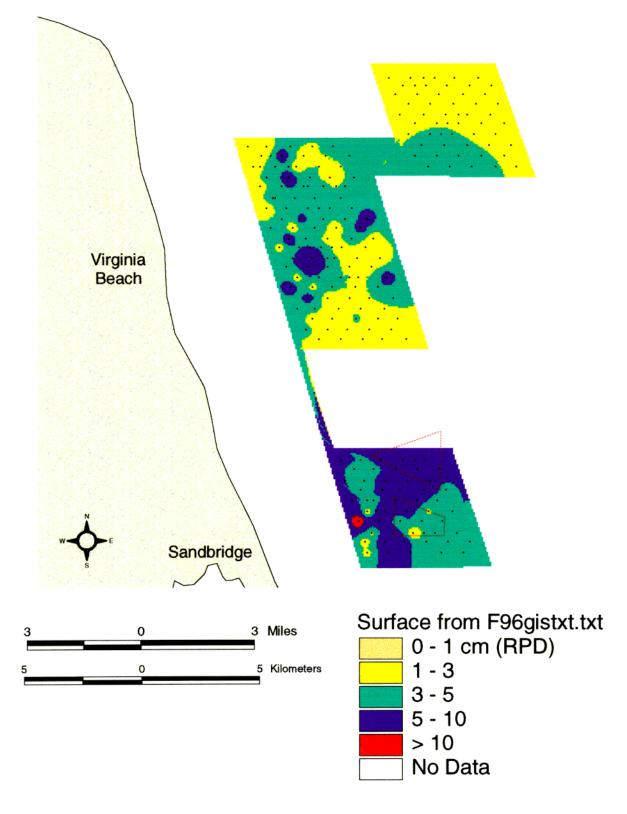


Figure 19. Fall 1996 redox potential discontinuity (RPD) layer depth (cm) from SPI.

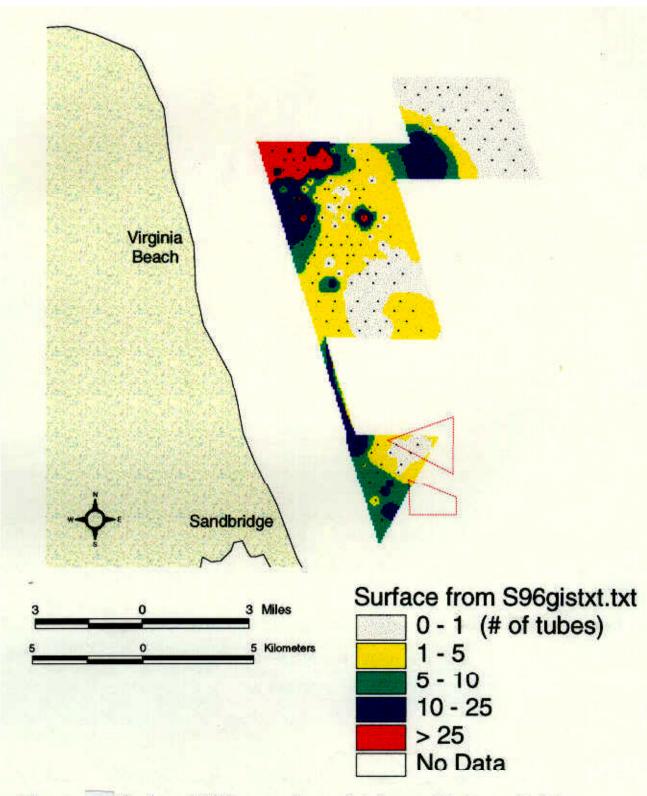


Figure 20. Spring 1996, number of infaunal tubes visible at the sediment-water interface.

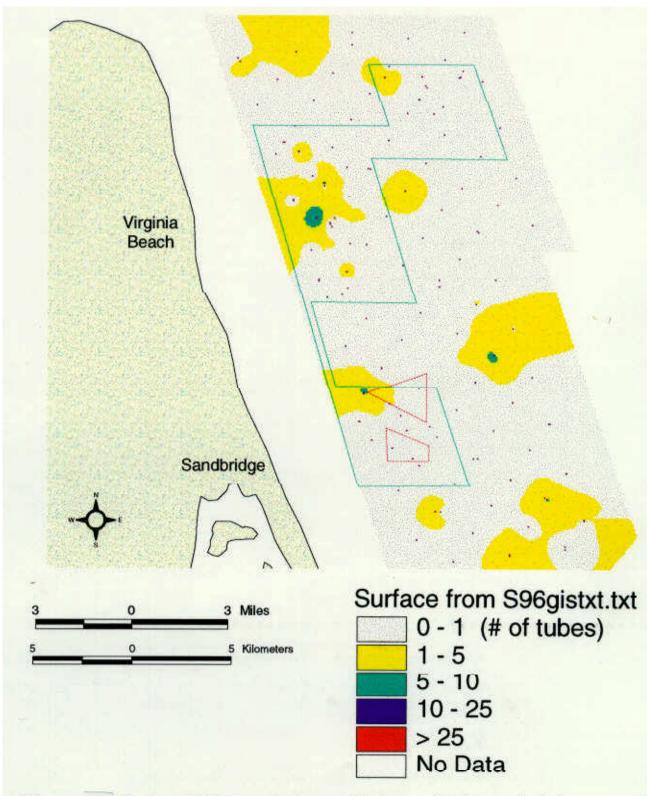
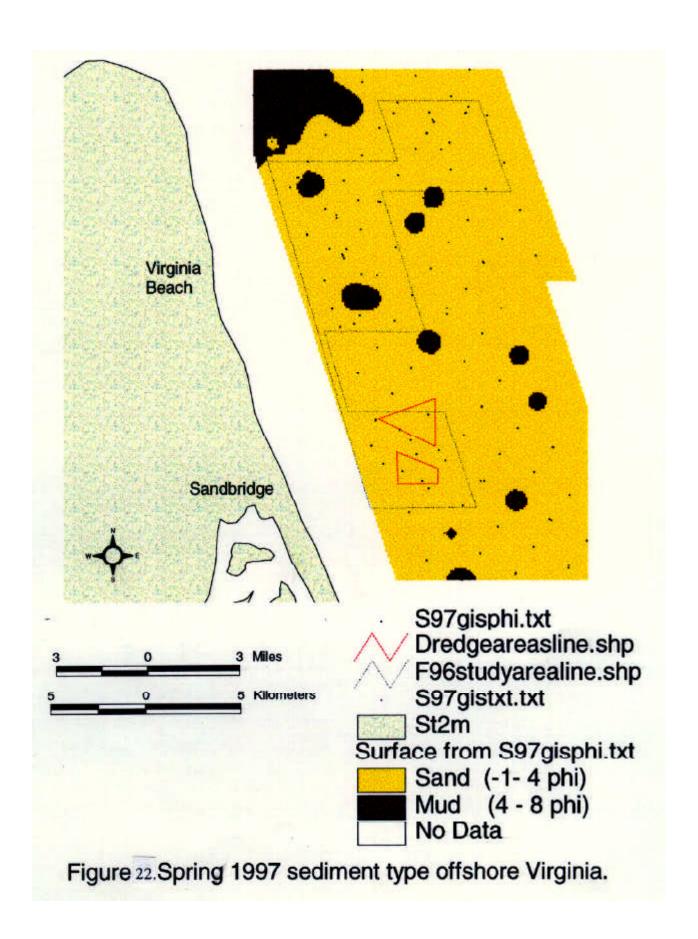



Figure 21. Spring 1997, number of infaunal tubes visible at the sediment-water interface.

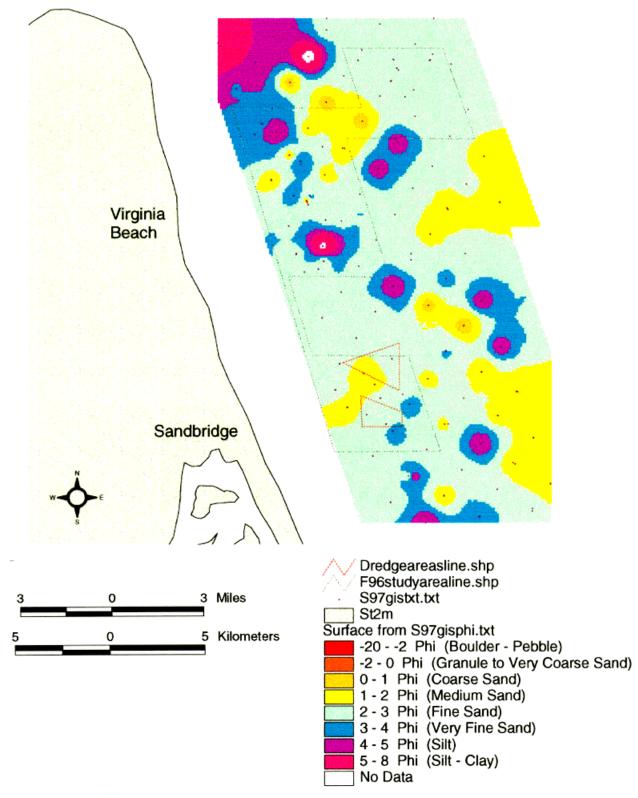


Figure 23. Spring 1997 sediment phi offshore Virginia.

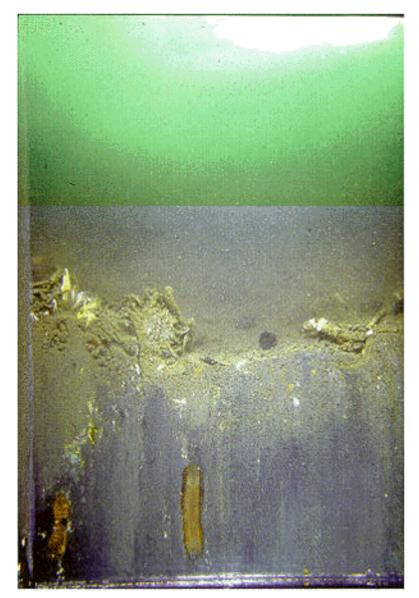


Figure 24. Habitat class A, biologically dominated silty sediments

Figure 25. Habitat class B, physically dominated silty sediments.

Figure 26. Habitat class C, combined biological and physical feature presence, silty fine sand to very fine sand sediments.

Figure 27. Habitat class D. physically dominated fine sand sediments.

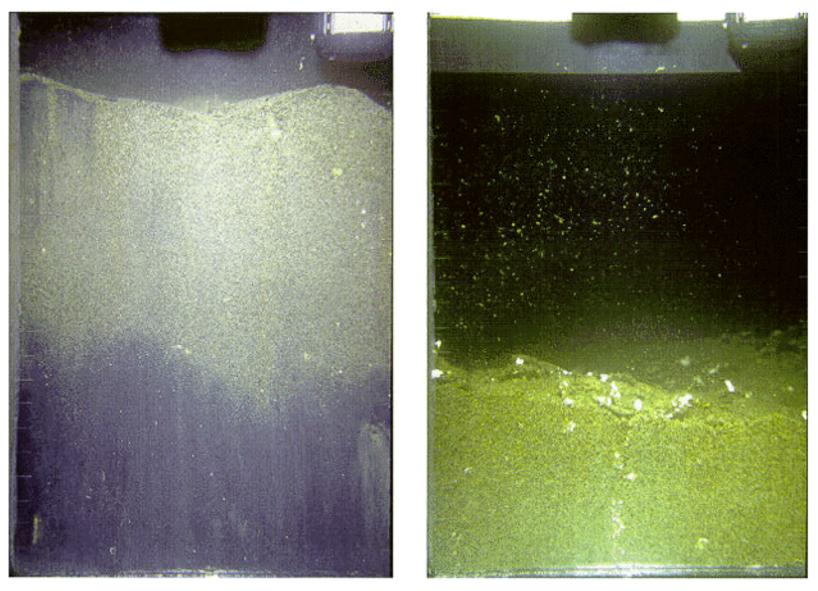


Figure 28. Hibitat class E, biologically dominated fine sand sediments

Figure 29. Habitat class F, physically dominated medium sand sediments with shell fragments.

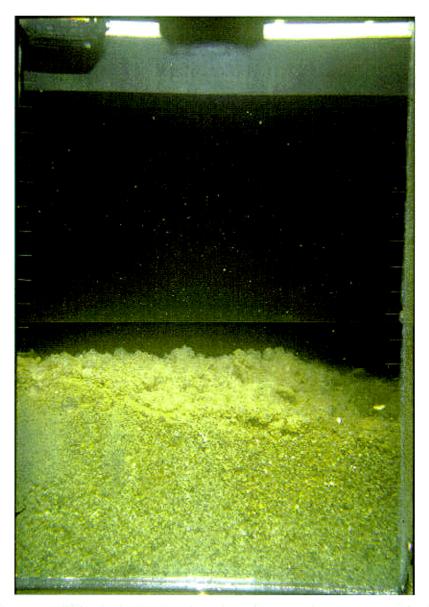
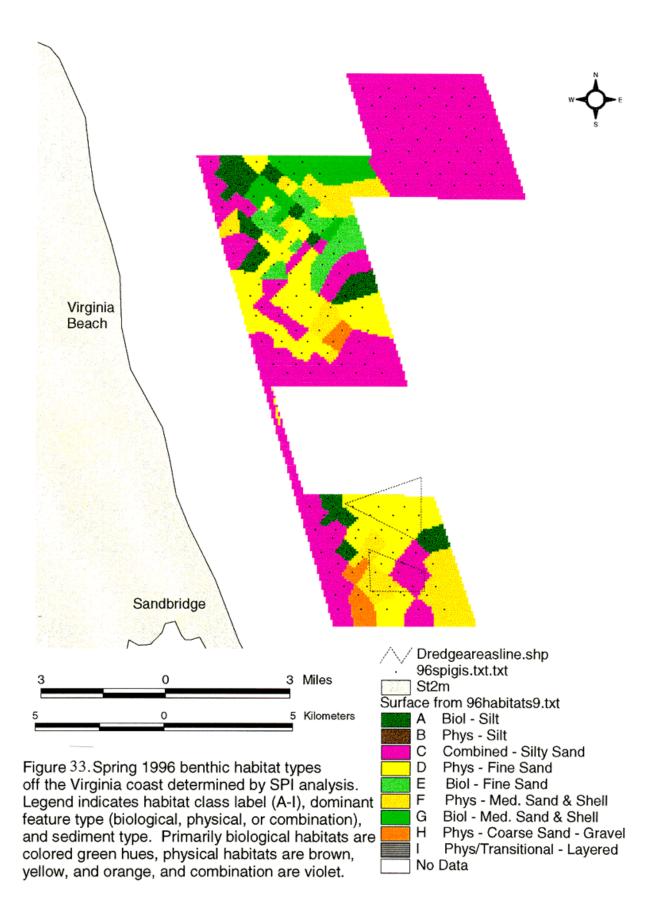
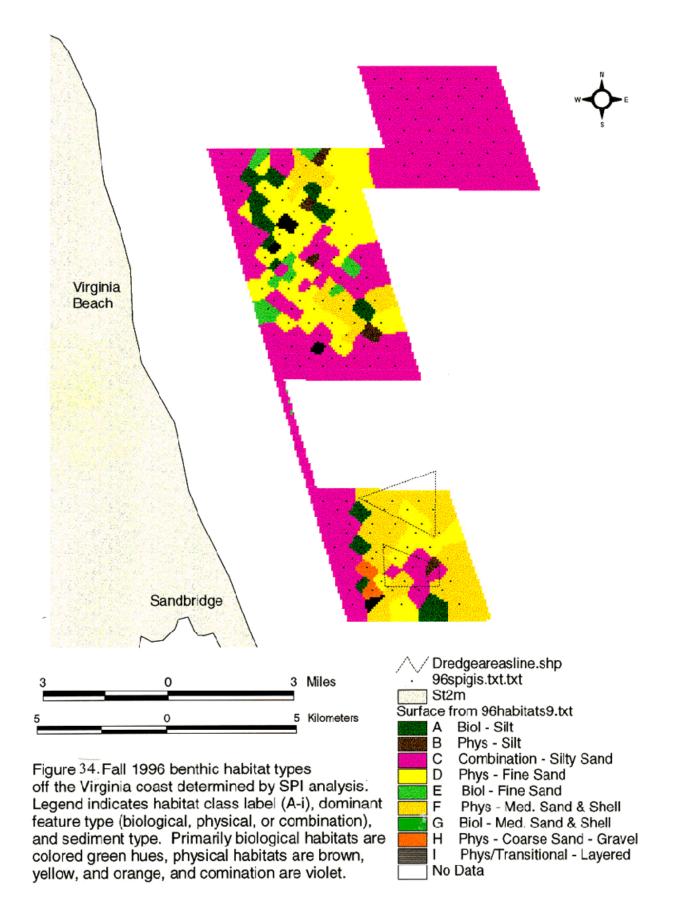
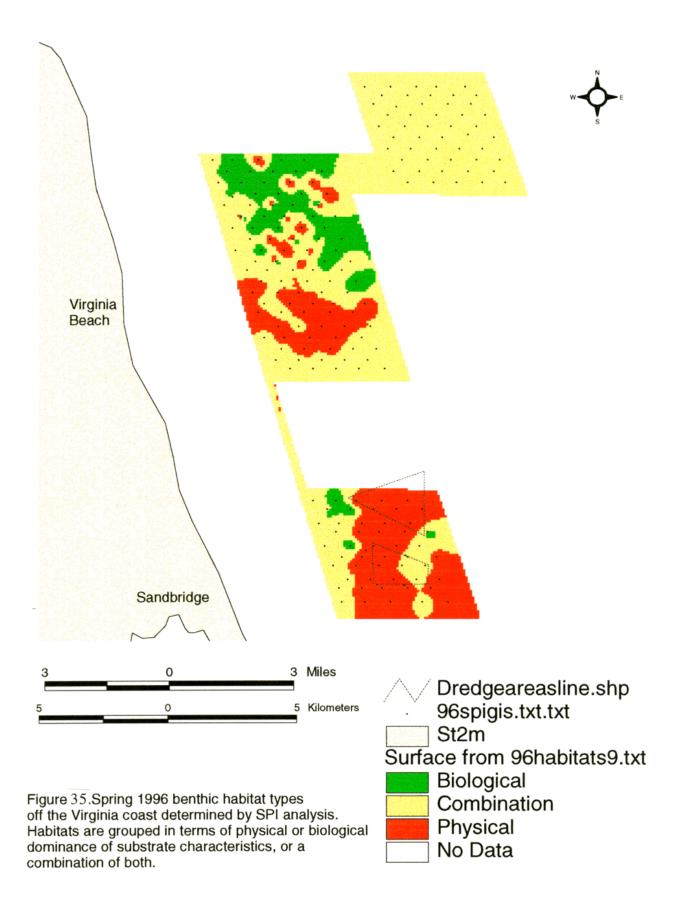


Figure 30. Habitat class G, biologically dominated medium sand sediments with shell fragments.




Figure 31. Habitat class H, physically dominated coarse sand to gravel sediments.



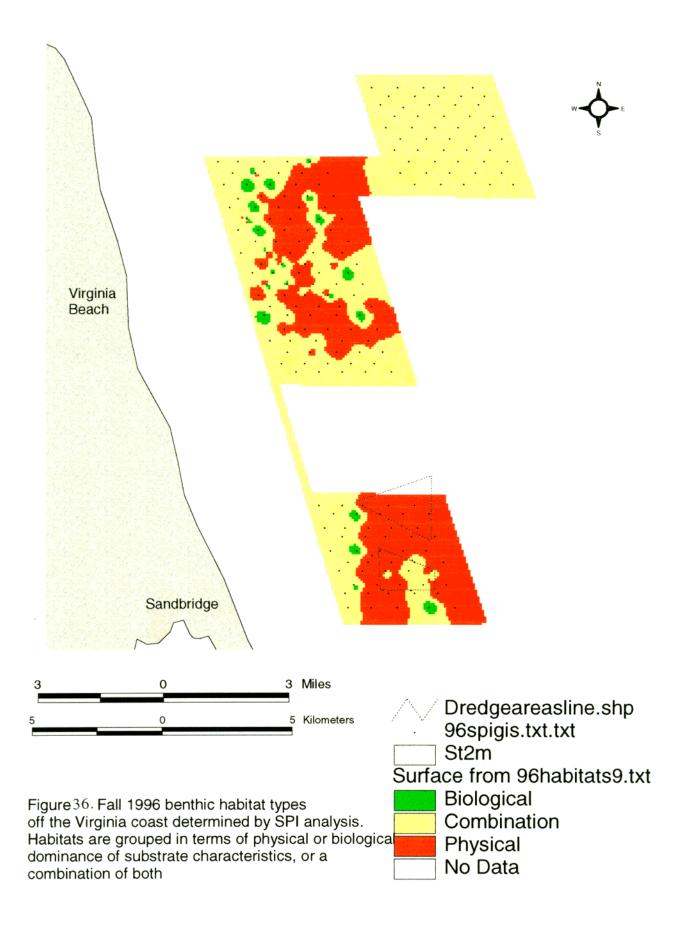


Figure 32. Habitat class I. physically dominated transitional sediments: coarser grain-size material layered over finer material

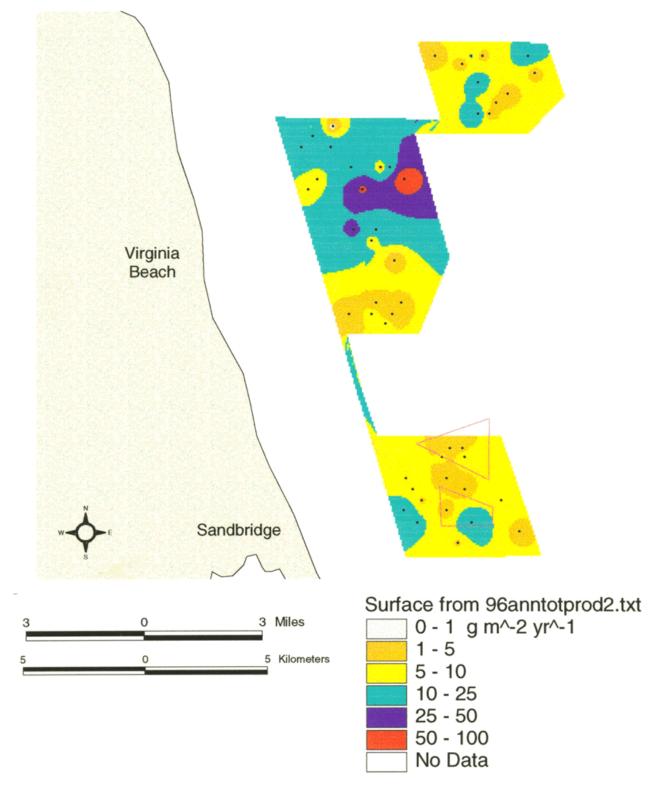


Figure 37. 1996 total annual community secondary production (g m^-2 yr^-1).

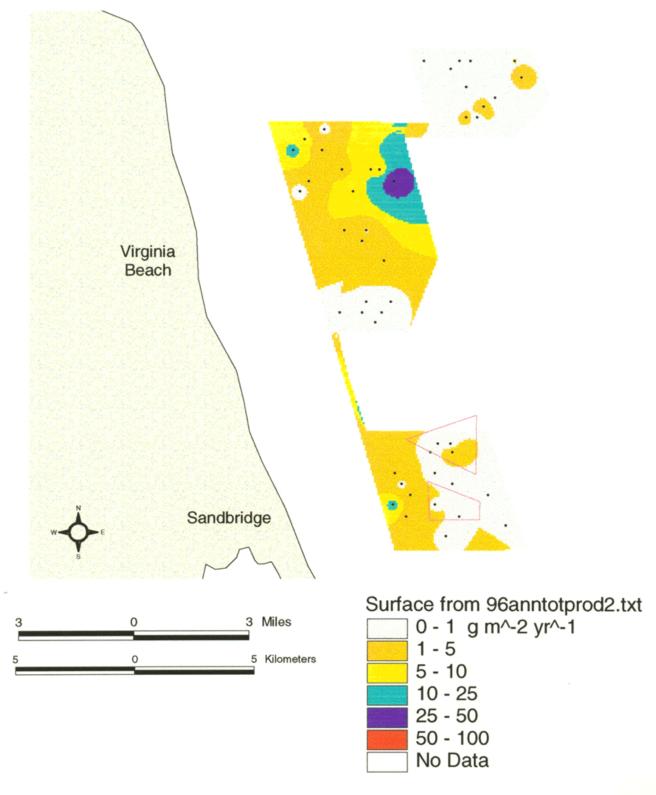


Figure 38. 1996 total annual molluscan secondary production (g m^-2 yr^-1).

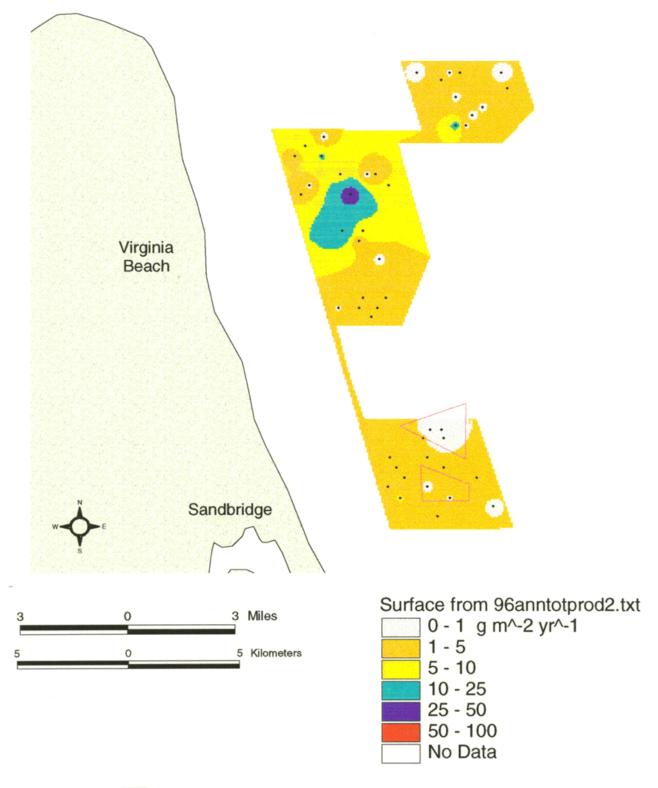


Figure 39. 1996 total annual annelid secondary production (g m^-2 yr^-1).

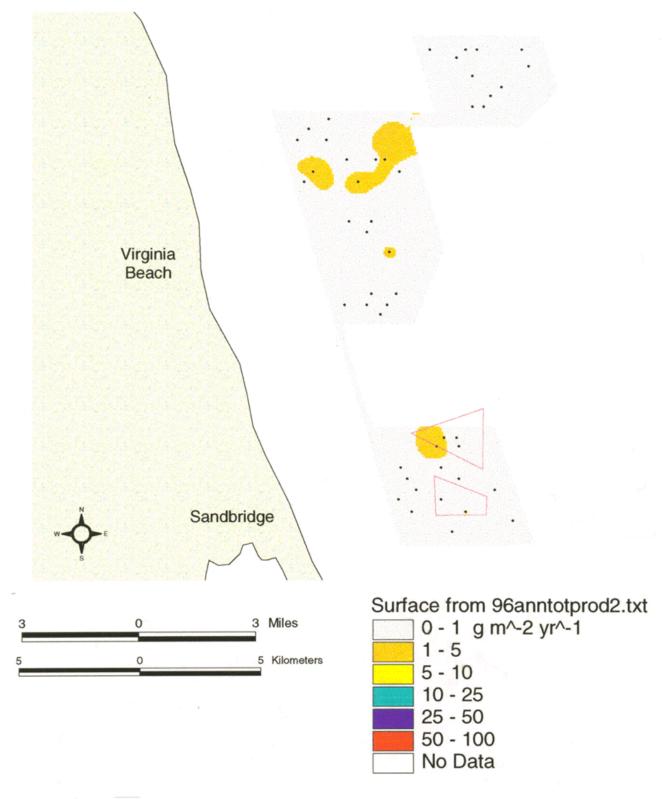


Figure 40. 1996 total annual crustacean secondary production (g m^-2 yr^-1).

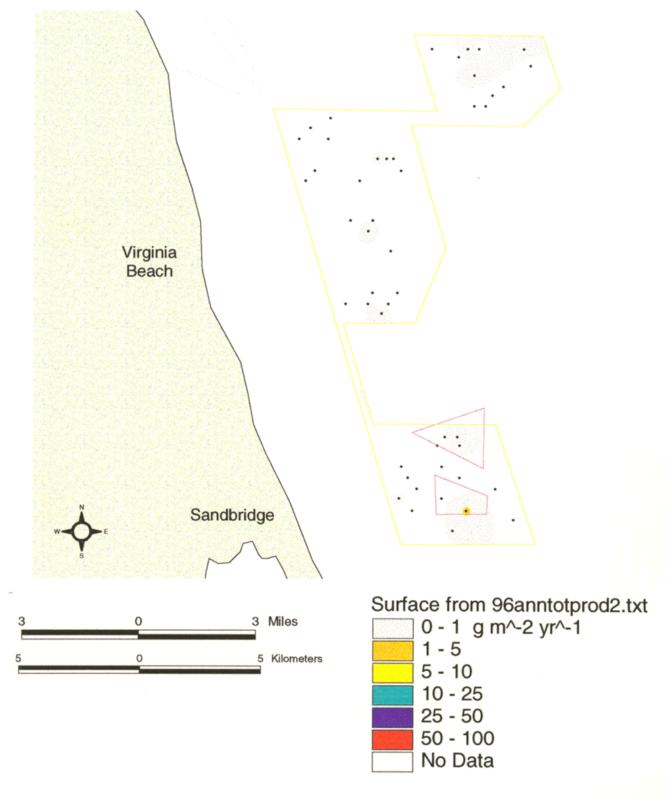



Figure 41. 1996 total annual secondary production (g m^-2 yr^-1) for miscellaneous taxa.

Figure 42. Spring 1996 benthic habitat types in the vicinity of Sandbridge shoal determined by SPI analysis.

Legend indicates habitat class label (A-I), dominant feature type (biological, physical, or combination), and sediment type. Primarily biological habitats are colored green hues, physical habitats are brown, yellow, and orange, and combination are violet.

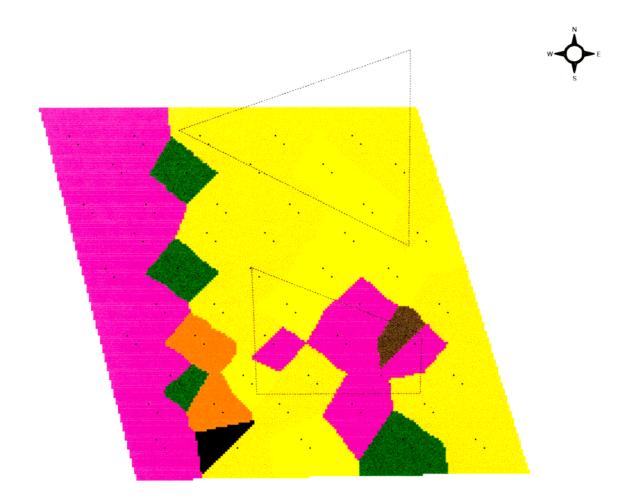


Figure 43. Fall 1996 benthic habitat types in the vicinity of Sandbridge shoal determined by SPI analysis.

Legend indicates habitat class label (A-I), dominant feature type (biological, physical, or combination), and sediment type. Primarily biological habitats are colored green hues, physical habitats are brown, yellow, and orange, and combination are violet.

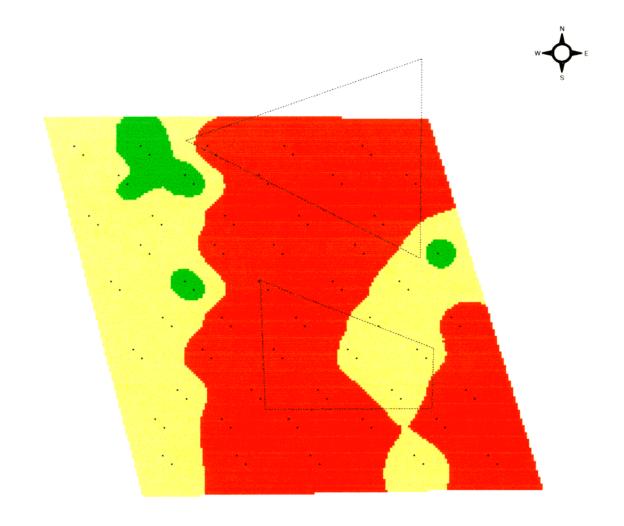
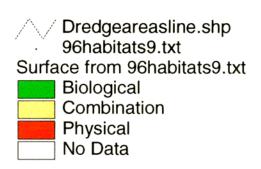



Figure 44. Spring 1996 benthic habitat types in the vicinity of Sandbridge shoal determined by SPI analysis.

Habitats are grouped in terms of physical or biological dominance of substrate characteristics, or a combination of both

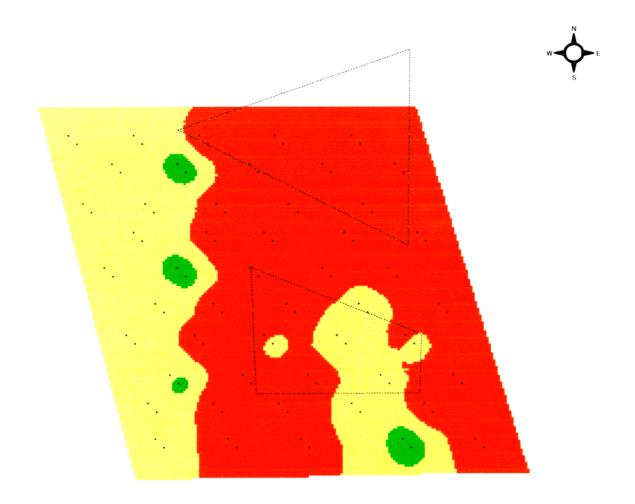
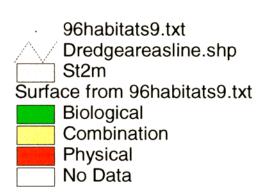



Figure 45. Fall 1996 benthic habitat types in the vicinity of Sandbridge shoal determined by SPI analysis.

Habitats are grouped in terms of physical or biological dominance of substrate characteristics, or a combination of both

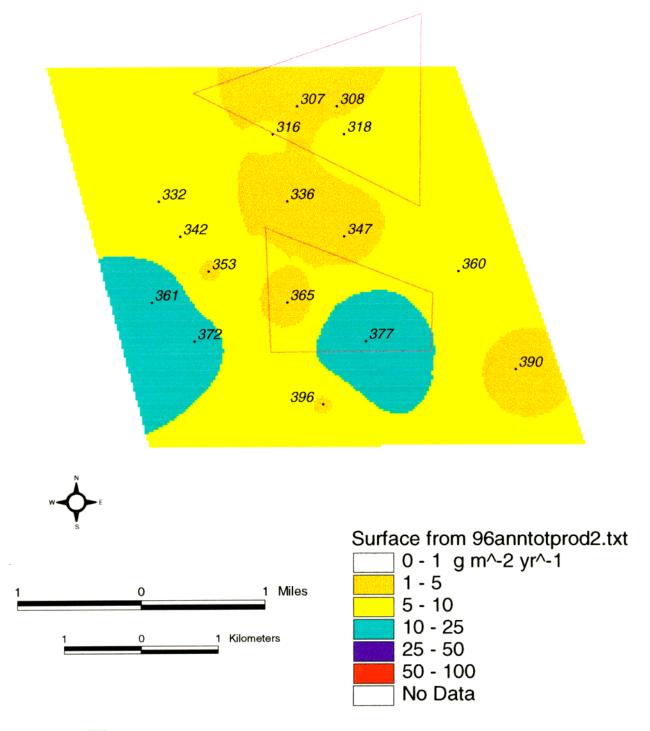


Figure 46. 1996 total annual community secondary production (g m^-2 yr^-1) in the vicinity of Sandbridge shoal and the proposed borrow areas. 1996 Cell numbers are labelled.

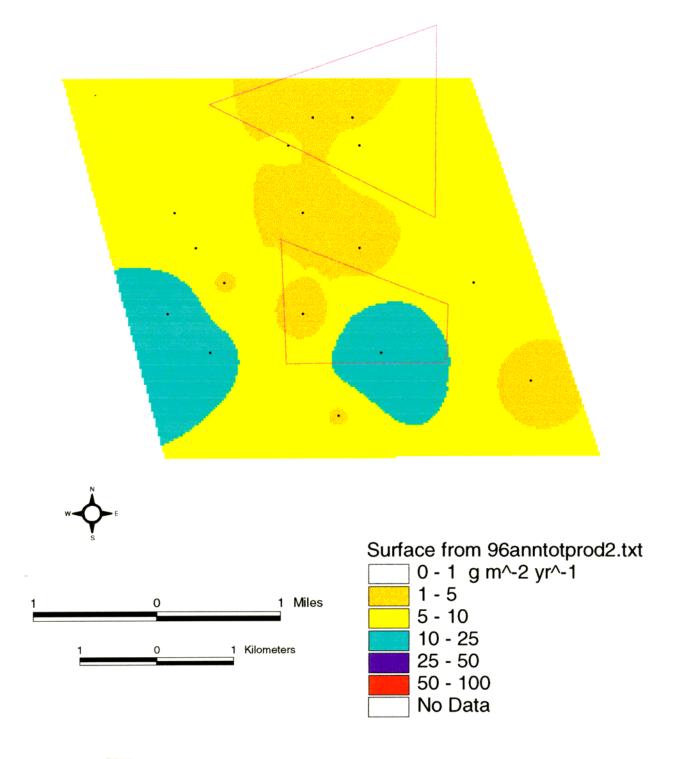


Figure 47 1996 total annual community secondary production (g m^-2 yr^-1) in the vicinity of Sandbridge shoal and the proposed borrow areas.

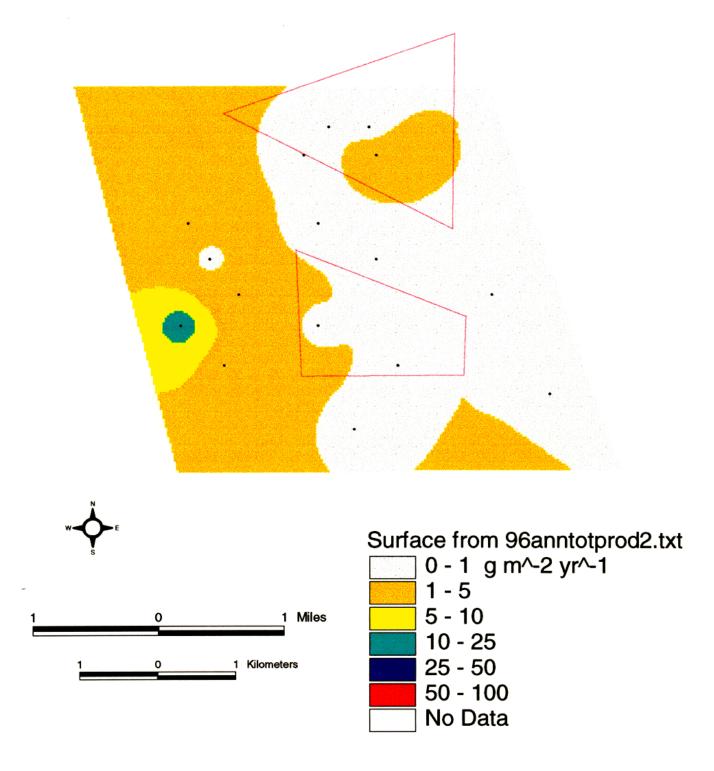


Figure 48. 1996 total annual molluscan secondary production (g m^-2 yr^-1) in the vicinity of Sandbridge shoal and the proposed borrow areas.

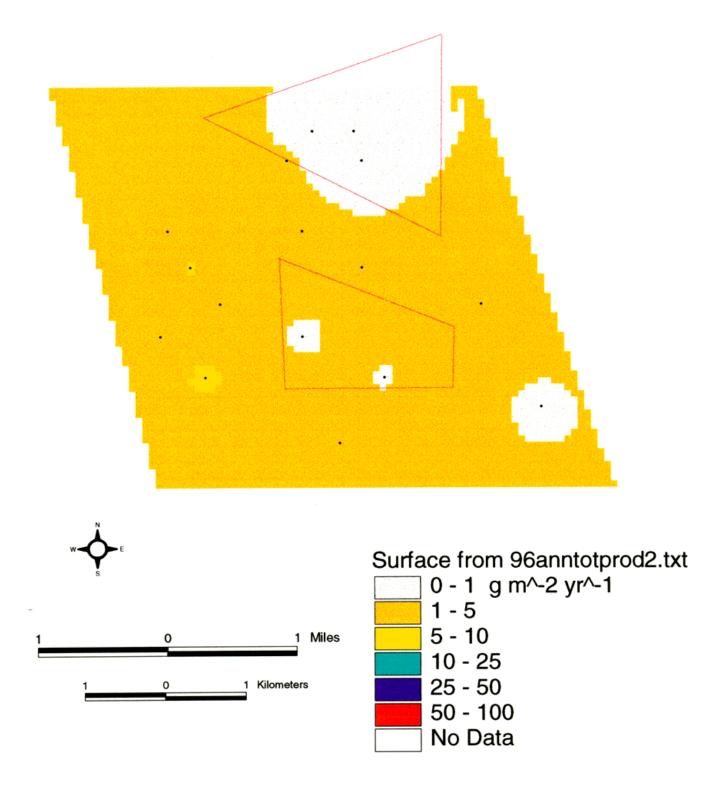


Figure 49. 1996 total annual polychaete secondary production (g m^-2 yr^-1) in the vicinity of Sandbridge shoal and the proposed borrow areas.

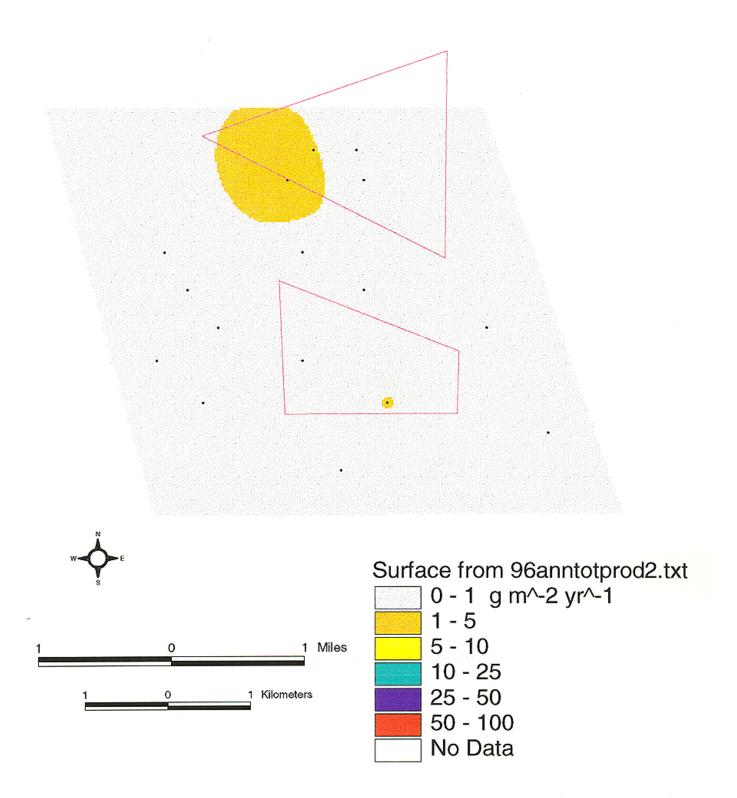


Figure 50. 1996 total annual crustacean secondary production (g m^-2 yr^-1) in the vicinity of Sandbridge shoal and the proposed borrow areas.

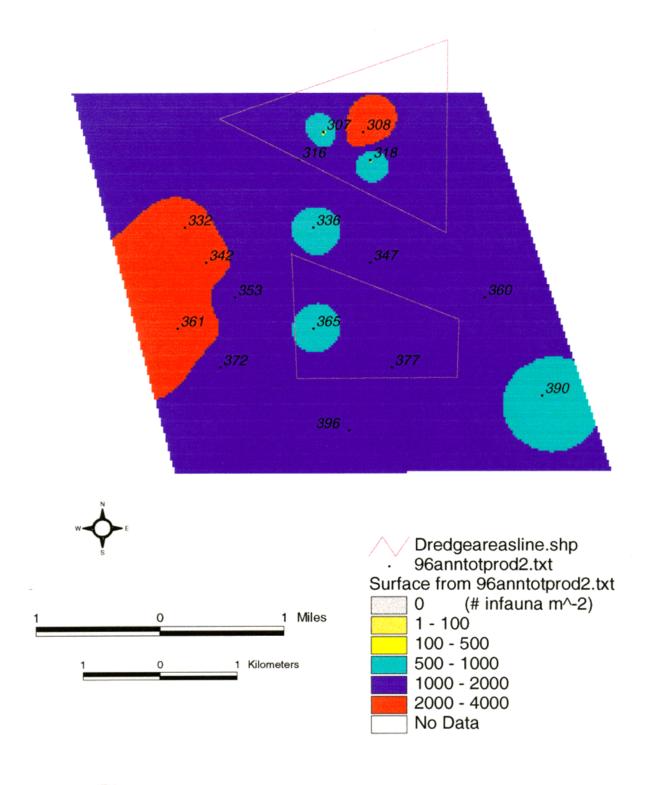


Figure 51. 1996 mean annual densities of all infauna (# m^-2) in the vicinity of Sandbridge shoal and the proposed borrow areas. Grab sample cell numbers are labelled.

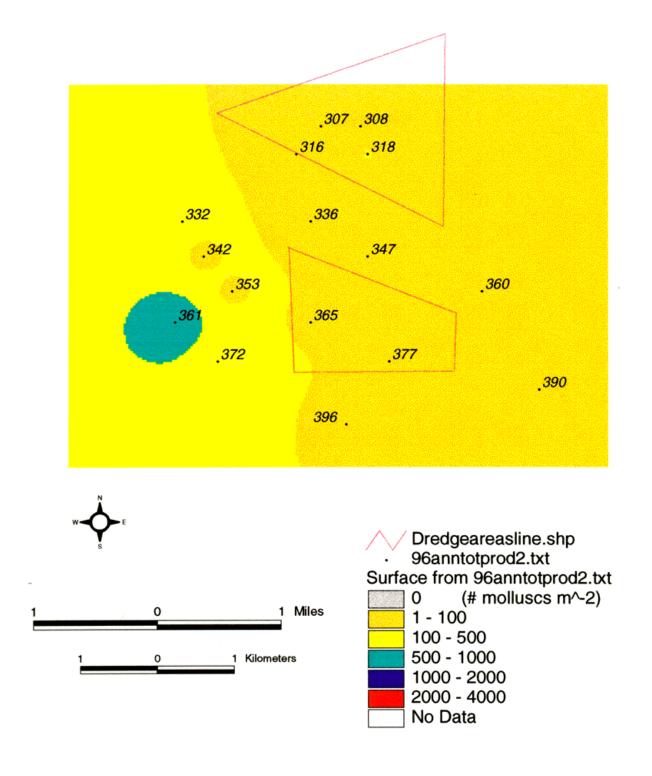


Figure 52. 1996 mean annual densities of molluscs (# m^-2) in the vicinity of Sandbridge shoal and the proposed borrow areas. Grab sample cell numbers are labelled.

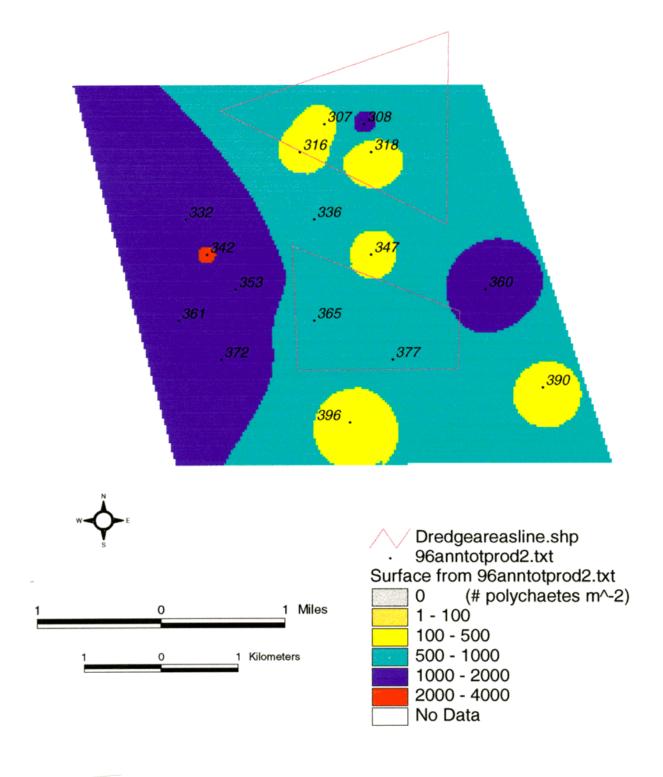


Figure 53.1996 mean annual densities of polychaetes (# m^-2) in the vicinity of Sandbridge shoal and the proposed borrow areas. Grab sample cell numbers are labelled.

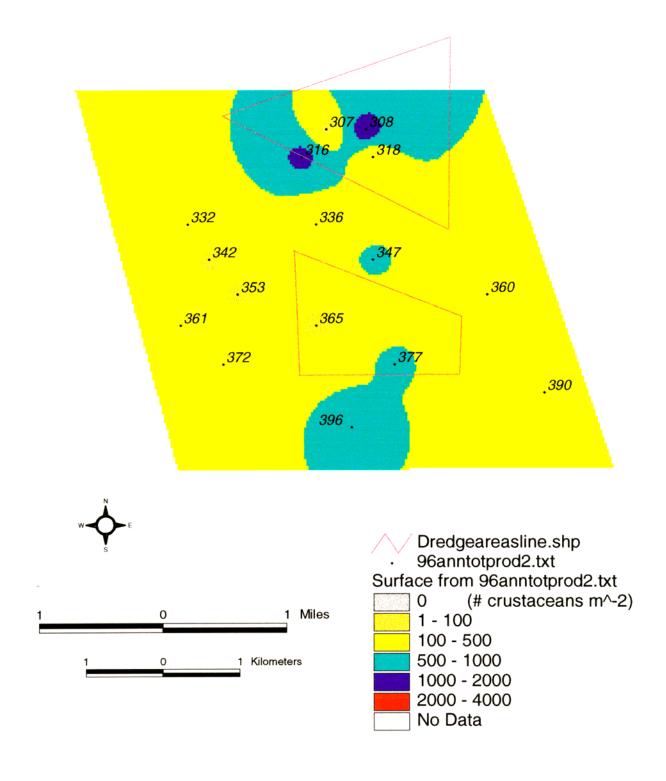


Figure 54.1996 mean annual densities of crustaceans (# m^-2) in the vicinity of Sandbridge shoal and the proposed borrow areas. Grab sample cell numbers are labelled.

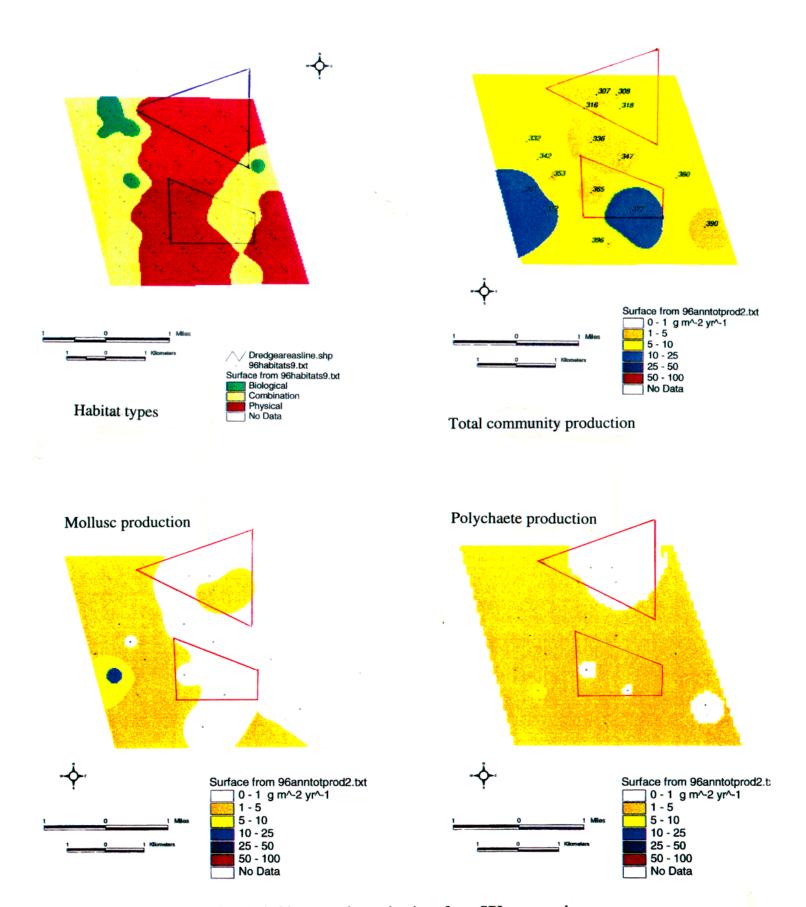
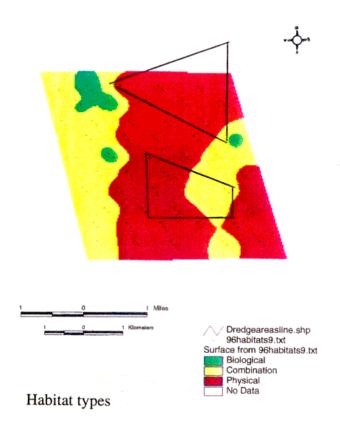
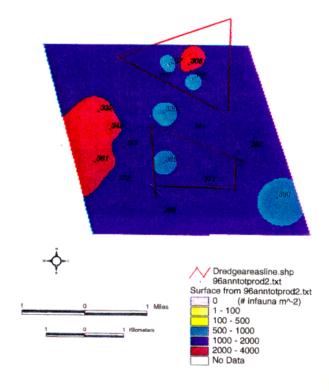
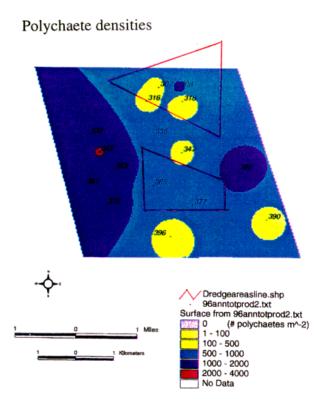





Figure 55. Comparison of gross habitat type determinations from SPI to secondary production calculated using grab data for the study area off Sandbridge, in the vicinity of the proposed borrow areas.

Total infaunal densities

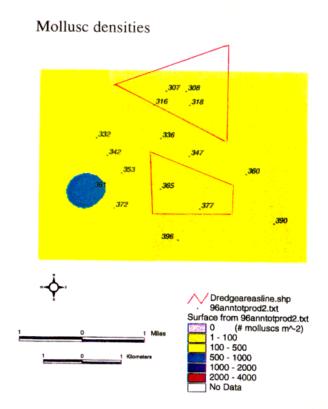
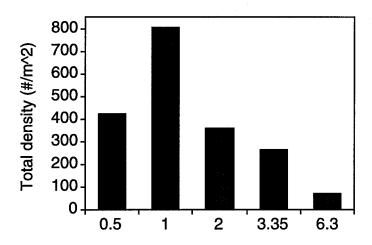



Figure 56. Comparison of gross habitat type determinations from SPI to infaunal densities from grab data for the study area off Sandbridge, in the vicinity of the proposed borrow areas.

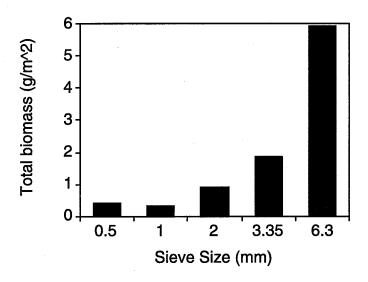


Figure 57. Size class distributions of total biomass and number of individuals per m^2 for all 1996 grab data.

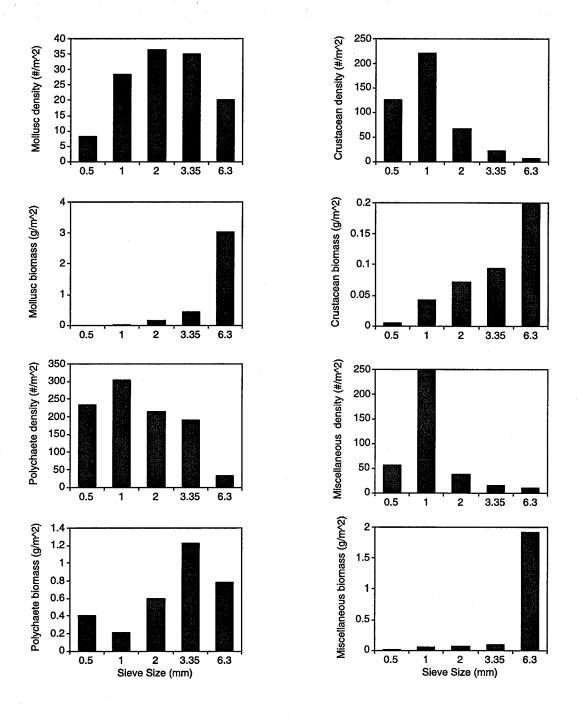


Figure 58. Size class distributions of mollusc, polychaet, crustacean, and other (miscellaneous) taxa biomass and number of individuals per m^2 for all 1996 grab data.

Table 1. Spring and fall 1996 and 1997 positions.

CELL	N	LAT	-LON	SP _i R96spi	SPR96gr	FAL96spi	FAL96gr	SPR97spi	SPR97gr	FAL97spi	FAL97gr
96001	2	36.883	-75.939	+		+					
96003	2	36.883	-75.932	+		+					
96005	3	36.883	-75.923	+		+	+				
96007	2	36.883	-75.915	+		+					
96009	2	36.883	-75.907	+		+					
96012	2	36.879	-75.934	+		+					
96013	4	36.878	-75.930		+		+	+			
96014	2	36.879	-75.926	+		+					
96016	2	36.879	-75.918	+		+			,		
96018	2	36.879	-75.910	+		+			,		
96020	2	36.879	-75.901	+		+					
96021	2	36.875	-75.937	+		+					
96023	2	36.875	-75.929	· +		+					
96024	5	36.874	-75.923		+		+	+	+		
96025	2	36.875	-75.921			+					
96027	2	36.875	-75.912	+		+					
96029	2	36.875	-75.904	+		+					
96031	1	36.874	-75.934				+				
96032	2	36.870	-75.932	+		+					
96034	2	36.871	-75.924	+		+					
96036	2	36.871	-75.916	+		+					
96038	2	36.871	-75.908	+		+					
96040	2	36.871	-75.899	+		+					
96041	2	36.867	-75.935	+		+					
96043	2	36.867	-75.926	+		+				•	
96045	2	36.867	-75.918	+		+					
96047	2	36.867	-75.911	+		+					
96048	1	36.867	-75.905				+				
96049	7	36.867	-75.902	+	+	+	+	+	+		
96050	2	36.867	-75.908		+		+				
96052	3	36.863	-75.929	+		+	+				
96054	2	36.863	-75.921	+		+					
96056	2	36.863	-75.914	+		÷					
96058	2	36.863	-75.904	+		+					
96060	3	36.863	-75.896	+		+	+				
96061	3	36.859	-75.932	+	+	+					
96063	2	36.859	-75.925	+		+					
96065	2	36.859	-75.916	+		+					

Table 1. Spring and fall 1996 and 1997 positions.

CELL		LAT	-LON	SP _i R96spi	SPR96gr	FAL96spi	FAL96gr	SPR97spi	SPR97gr	FAL97spi	FAL97gr
9606		36.858	-75.912		+		+	+	+		
9606		36.859	-75.908	+		+					
9606		36.859	-75.900	+		+				`	
9607		36.855	-75.926	+		+					
9607		36.855	-75.919	+		+					
9607		36.855	-75.911	+		+					
9607		36.855	-75.902	+		+					
9608		36.855	-75.894	+		+					
9608		36.851	-75.931			+					
9608		36.851	-75.922	+		+					
9608		36.851	-75.914	+		+					
9608		36.851	-75.906	+		+					
9608		36.851	-75.896	+		+					
9609		36.847	-75.924			+					
9609		36.847	-75.917	+		+					
9609		36.847	-75.909	+		+					
9609		36.847	-75.900	+		+					
9610		36.847	-75.891	+		+					
9610		36.844	-75.927			+					
9610		36.844	-75.920			+					
9610		36.843	-75.915		+		+	+	+		
9610		36.844	-75.911			+					
9610		36.843	-75.907		+		+	+	+		
9610		36.844	-75.904			+					
9610		36.844	-75.894	+		+					
9611		36.840	-75.922			+					
9611	4 2	36.840	-75.915			+					
9611	5 5	36.839	-75.908		+		+	+			
9611	6 2	36.840	-75.906			+					
9611	8 2	36.840	-75.898			+					
9612	0 2	36.840	-75.889	+		+					
9612	1 2	36.836	-75.925	+		+					
9612	3 2	36.836	-75.916	+		+					
9612	5 2	36.836	-75.909			+					
9612	7 2	36.836	-75.901			+					
9612	9 2	36.836	-75.892	+		+					*
9613		36.832	-75.921	+		+					
9613		36.832	-75.912	+		+					
9613		36.832	-75.904			+					

Table 1. Spring and fall 1996 and 1997 positions.

										,	
CELL	N	LAT	-LON	SPR96spi	SPR96gr	FAL96spi	FAL96gr	SPR97spi	SPR97gr	FAL97spi	FAL97gr
96137	5	36.832	-75.900	,	+		+	+	+	•	· ·
96138	2	36.832	-75.897			+					
96140	2	36.832	-75.886	+		+					
96141	2	36.829	-75.923	+		+					
96143	2	36.829	-75.915	+		+					
96145	2	36.829	-75.907	+		+					
96147	2	36.829	-75.898			+					
96149	2	36.829	-75.890			+					
96152	2	36.824	-75.916	+		+					
96154	. 2	36.824	-75.909	+		+					
96156	2	36.824	-75.901	+		+					
96158	2	36.824	-75.893			+					
96160	2	36.824	-75.884			+ -					
96161	2	36.820	-75.921	+		+					
96163	2	36.820	-75.914	+		+					
96165	2	36.820	-75.905	+		+					
96167	2	36.820	-75.896	+		+					
96169	2	36.820	-75.887			+					
96172	2	36.816	-75.915	+		+					
96174	7	36.816	-75.910	+	+	+	+	+	+		
96176	3	36.816	-75.898	+		+	+				
96178	2	36.816	-75.890	+		+					
96180	2	36.816	-75.882			+					
96181	4	36.812	-75.917	+	+	+	+				
96183	3	36.812	-75.909	+	. +	+					
96185	7	36.812	-75.901	+	+	+	+	+	+		
96187	2	36.812	-75.893	+		+					
96189	2	36.812	-75.885			+					
96192	2	36.809	-75.912	+		+					
96194	7	36.808	-75.903	+	+	+	+	+	+		
96196	2	36.809	-75.896	+		+			-		
96198	2	36.809	-75.888			+					
96200	2	36.809	-75.879	+		+			`		
96201	7	36.908	-75.885	+	+	+	+	+	+		
96203	2	36.909	-75.877	+		+			•		
96204	2	36.908	-75.872		+		+				
96205	4	36.909	-75.868	+	+	+	+				
96207	2	36.909	-75.861	+		+	-			•	
96209	9	36.908	-75.851	+	+	+	+	+			

Table 1. Spring and fall 1996 and 1997 positions.

CELL	N.	LAT	-LON	SPR96spi	SPR96gr	FAL96spi	FAL96gr	SPR97spi	SPR97gr	FAL97spi	FAL97gr
96212	2	36.906	-75.880	` +		+			_		_
96213	2	36.905	-75.875		+		+				
96214	2	36.906	-75.871	·+		+					
96216	2	36.906	-75.863	+		+					
96218	2	36.906	-75.855	+		+					
96220	2	36.906	-75.847	+		+					
96221	2	36.903	-75.883	+		+					
96223	2	36.902	-75.875	+		+					
96225	2	36.903	-75.866	+		+					
96227	2	36.903	-75.857	+		+					
96229	4	36.903	-75.849	+	+	+	+				
96232	2	36.899	-75.878	+		+					
96234	7	36.898	-75.869	+	+	+	+	+	+		
96236	2	36.899	-75.861	+		+					
96238	2	36.899	-75.852	+		+					
96240	2	36.899	-75.844	+		+					
96241	2	36.895	-75.881	+		+					
96243	2	36.895	-75.872	+		+					
96245	2	36.895	-75.864	+		+					
96246	5	36.894	-75.858		+		+	+	+		
96247	2	36.895	-75.856	+	*	+					
96249	2	36.895	-75.847	+		+					
96252	2	36.891	-75.876	+		+					
96254	2	36.891	-75.867	+		+					
96255	5	36.891	-75.862		+		+	+	+		
96256	2	36.891	-75.859	+		+					
96258	2	36.892	-75.850	+		+					
96260	2	36.891	-75.841	+		+					
96261	2	36.887	-75.878	+		+					
96263	4	36.887	-75.870	+	+	+	+				
96264	2	36.887	-75.865		+		+				
96265	2	36.887	-75.861	+		+					
96267	2	36.887	-75.853	+		+					
96269	2	36.887	-75.845	+-		+					
96272	2	36.883	-75.873	+		+					
96274	2	36.883	-75.864	+		+					
96276	2	36.883	-75.856	+		+					
96278	2	36.883	-75.847	+		+					
96280	2	36.883	-75.839	+		+					

Table 1. Spring and fall 1996 and 1997 positions.

CELL	N	LAT	-LON	SPR96spi	SPR96gr	FAL96spi	FAL96gr	SPR97spi	SPR97gr	FAL97spi	FAL97gr
96281	2	36.879	-75.876	` +		+					
96283	2	36.879	-75.867	+		+					
96285	2	36.879	-75.859	+		+					
96287	2	36.879	-75.850	+		+					
96289	2	36.879	-75.841	+		+					
96292	2	36.875	-75.871	+		+					
96294	2	36.875	-75.862	+		+					
96296	2	36.875	-75.854	+		+					
96298	2	36.875	-75.845	+		+					
96300	2	36.875	-75.837	+		+					
96301	2	36.762	-75.904	+		+					
96303	2	36.762	-75.896	+		+					
96305	2	36.762	-75.889	+		+					
96307	3	36.762	-75.880	+	+	+					
96308	2	36.761	-75.875		+						+
96309	2	36.762	-75.871	+		+					
96312	2	36.759	-75.899	+		+					
96314	2	36.759	-75.891	+		+					
96316	8	36.758	-75.882	+	+	+	+	+	+		+
96318	3	36.759	-75.875	+	+	+					
96320	2	36.759	-75.866	+		+					
96321	2	36.754	-75.902	+		+					
96323	2	36.754	-75.895	+		+					
96325	2	36.754	-75.887	+		+					
96327	2	36.754	-75.879	+		+					
96329	2	36.754	-75.870	+		+					
96332	6	36.750	-75.896	+		+	+	+	+		
96334	2	36.751	-75.888	+		+					
96336	5	36.750	-75.881	+	+	+	+				+
96338	2	36.751	-75.872	+		+					
96340	2	36.751	-75.864	+		+					
96341	2	36.746	-75.900	. +		+					
96342	1	36.746	-75.893		+						•
96343	2	36.746	-75.891	+		+					
96345	2	36.746	-75.883	+		+					
96347	9	36.746	-75.874	+	+	+	+	+	+		+
96349	2	36.746	-75.867	+		+					
96352	2	36.742	-75.894	+		+					
96353	5	36.742	-75.890		+		+	+	+		

Table 1. Spring and fall 1996 and 1997 positions.

CELL		LAT	-LON	SPR96spi	SPR96gr	FAL96spi	FAL96gr	SPR97spi	SPR97gr	FAL97spi	FAL97gr
9635		36.74		, +		+				_	_
9635		36.74		+		+					+
9635		36.74		+		+					
9636		36.74		+	+	+					
9636		36.73		+	+	+	+				+
9636		36.73		+		+					
9636		36.73		+	+	+		+	+		+
9636		36.73		+		+					
9636		36.73	39 -75.865	+		+					
9637		36.73		+	+	+	+				+
9637	4 2	36.73	.75.884	+		+					
9637	6 2	36.73	-75.876	+		+					
9637		36.73	33 -75.871		+		+	+	+		+
9637	8 2	36.73	34 -75.868	+		+					
9638	0 2	36.73	-75.860	+		+					
9638	1 2	36.73	-75.895	+		+					
9638		36.73	-75.887	+		+					
9638	5 2	36.73	-75.880	+		+					
9638	7 2	36.73	-75.871	+		+					
9638	9 2	36.73	-75.863	+		+					
9639	0 1	36.73	-75.854		+						
9639	2 2	36.72	26 -75.894	+		+					
9639	4 2	36.72	26 -75.886	+		+					
9639	6 3	36.72	26 -75.877	+		+	+				
9639	8 2	36.72	-75.866	+		+					
9640	0 2	36.72	26 -75.857	+		+					
9700	1 2	36.91	6 -75.951					+			
9700	2 2	36.92	20 -75.925	7				+			
9700	3 2	36.92	26 -75.900					+			
9700	4 2	36.92	.75.874					+			
9700	5 2	36.92	28 -75.849					+			
9700	6 2	36.90	75.933					+			
9700	7 2	36.91	0 -75.908					+			
9700		36.91						+			
9700	9 2	36.91	6 -75.857					+			
9701	1 2	36.89	5 -75.942					+			
9701	2 2	36.89	8 -75.917					+			
9701		36.90	1 -75.891					+			
9701	4 2	36.90	4 -75.866					+			

Table 1. Spring and fall 1996 and 1997 positions.

CELL	N	LAT	-LON	SPR96spi	SPR96gr	FAL96spi	FAL96gr	SPR97spi	SPR97gr	FAL97spi	FAL97gr
97015	2	36.906	-75.841	•				+			
97016	2	36.885	-75.925					+			
97017	2	36.888	-75.900					+			
97018	2	36.891	-75.874					+			
97019	2	36.911	<i>-</i> 75.849					+			
97021	2	36.873	-75.934					+			
97022	2	36.876	-75.908					+			
97023	2	36.879	-75.883					+			
97024	2	36.881	-75.858					+			
97025	2	36.885	-75.832					+			
97026	2	36.863	-75.917					+			
97027	2	36.866	-75.891					+			
97028	2	36.869	-75.866					+			
97029	2	36.872	-75.841					+			
97031	2	36.851	-75.926					+			
97032	2	36.853	-75.900					+			
97033	2	36.856	-75.875					+			
97034	2	36.857	-75.850					. +			
97035	2	36.862	-75.825					+			
97036	2	36.841	-75.909					+			
97037	2	36.844	-75.884	-				+			
97038	2	36.847	-75.859					+			
97039	2	36.849	-75.833					+			
97041	2	36.829	-75.917					+			
97042	2	36.831	-75.893					+			
97043	2	36.834	-75.867					+			
97044	2	36.837	-75.842					+			
97045	2	36.840	-75.818					+			
97046	3	36.819	-75.901					+	+		
97047	3	36.822	-75.876					+	+		
97048	2	36.825	-75.850					+			
97051	2	36.807	<i>-</i> 75.910		a.			+			
97052	2	36.809	-75.884					+			
97053	2	36.812	-75.860					+			
97054	2	36.815	-75.847					+			
97056	2	36.797	-75.893					+			
97057	2	36.800	-75.868					+			
97058	3	36.804	-75.843					+	+		
97061	2	36.785	-75.902					+			

Table 1. Spring and fall 1996 and 1997 positions.

CELL	N .	LAT	-LON	SP,R96spi	SPR96gr	FAL96spi	FAL96gr	SPR97spi	SPR97gr	FAL97spi	FAL97gr
97062	2	36.788	-75.877					+			
97063	2	36.791	-75.851					+			•
97064	3	36.793	-75.826					+	+		
97066	3	36.775	-75.885					+	+		
97067	2	36.778	-75.859					+			
97068	2	36.781	-75.835					+			
97071	3	36.763	-75.893					+	+		
97072	2	36.765	-75.869					+			
97073	3	36.769	-75.843					+			
97074	3	36.771	-75.826					+	+		
97076	2	36.753	-75.877					+			
97077	2	36.755	-75.852					+			
97078	2	36.759	-75.826					+			
97082	2	36.745	-75.862					+			
97083	2	36.746	-75.835					+			
97084	2	36.749	-75.810					+			
97086	2	36.730	-75.868					+			
97087	2	36.733	-75.843				*	+			
97088	2	36.738	-75.819					+			
97091	2	36.718	-75.878					+			
97092	2	36.721	-75.852					+			
97093	2	36.724	-75.827					+			
97094	2	36.727	-75.802					+			
97096	3	36.709	-75.860					+	+		
97097	2	36.712	-75.836					+			
97098	2	36.715	-75.811					+			
97101	2	36.696	-75.869					+			
97102	2	36.699	-75.844					+			
97103	2	36.702	-75.819					+			
97104	3	36.705	-78.166					+	+		
97106	2	36.686	-75.853					+			
97107	3	36.689	-75.827					+	+		
97108	2	36.692	-75.802					+			
97205	3	36.909	-75.868					+	+		
sb001	1	36.735	-75.878							+	
sb002	1	36.732	-75.877							+	
sb003	1	36.730	-75.878							+	
sb004	1	36.745	-75.875							+	+
sb005	1	36.742	-75.875							+	

CELL	N	LAT	-LON	SPR96spi	SPR96gr	FAL96spi	FAL96gr	SPR97spi	SPR97gr	FAL97spi	FAL97gr
sb006	1	36.738	-75.875	,						+	
sb007	1	36.735	-75.875							+	
sb008	1	36.732	-75.875							+	
sb009	1	36.730	-75.875							+	
sb010	1	36.745	-75.872							+	
sb011	1	36.742	-75.872							+	
sb012	1	36.739	-75.872							+	
sb013	1	36.735	-75.872							+	
sb014	1	36.733	-75.872							+	
sb015	1	36.730	-75.873							+	
sb016	1	36.745	-75.870							+	
sb017	1	36.741	-75.870							+	
sb018	1	36.738	-75.869							+	
sb019	1	36.735	-75.869							+	+
sb020	1	36.732	-75.870							+	
sb021	1	36.730	-75.870							+	+
sb022	1	36.730	-75.868							+	
sb023	1	36.732	-75.868							+	
sb024	1	36.735	-75.868							+	
sb025	1	36.738	-75.867							+	
sb026	1	36.741	-75.867							+	+
sb027	1	36.745	-75.868							+	
sb028	1	36.762	<i>-</i> 75.884							+	
sb029	1	36.760	-75.877							+	+
sb030	1	36.759	-75.872							+	
sb031	1	36.757	-75.864							+	
sb032	1	36.757	-75.853							+	
sb033	1	36.748	-75.879							+	+
sb034	1	36.754	-75.876							+	+
sb035	1	36.762	-75.871							+	
sb036	1	36.767	-75.869							+	
sb037	1	36.772	-75.882							+	
sb038	1	36.773	-75.882							+	
sb039	1	36.766	-75.877							+	+
sb040	1	36.761	-75.873							+	
sb041	1	36.738	-75.885							+	
sb042	1	36.750	-75.898					,		+	+
sb043	1	36.729	-75.878					•		+	
sb044	1	36.718	-75.842							+	

Table 1. Spring and fall 1996 and 1997 positions.

CELL	N	LAT	-LON	SP _i R96spi	SPR96gr	FAL96spi	FAL96gr	SPR97spi	SPR97gr	FAL97spi	FAL97gr	
sb045	1	36.724	-75.856						_	+		
sb046	1	36.732	-75.839							+		
sb047	1	36.742	-75.856							+		
sb081	1	36.745	-75.885							+		
sb082	1	36.742	-75.886							+		
sb083	1	36.739	-75.884							+		
sb084	1	36.735	-75.885							+		
sb085	1	36.733	-75.885							+		
sb086	1	36.730	-75.885							+		
sb087	1	36.742	-75.883							+	+	
sb088	1	36.738	-75.883							+		
sb089	1 .	36.735	-75.883							+		
sb090	1	36.732	-75.883							+		
sb091	1	36.730	-75.883							+		
sb092	1	36.745	-75.880							+		
sb093	1	36.742	-75.880							+		
sb094	1	36.738	-75.880							+		
sb095	1	36.735	-75.880							+		
sb096	1	36.733	-75.880							+		
sb097	1	36.730	-75.880							+	+	
sb098	1	36.745	-75.878							+		
sb099	1	36.742	-75.878							+		
sb100	1	36.738	-75.877							+		
t2	1	36.745	-75.883							+		
BANE	1	36.739	-75.864									BANE
BANW	1	36.747	-75.883									BANW
BASE	1	36.732	-75.864									BASE
BASW	1	36.733	-75.884									BASW
BBNE	1	36.772	-75.865									BBNE
BBSE	1	36.749	-75.865									BBSE
BBW	- 1	36.763	-75.892									BBW

Table 2. Coordinates for proposed borrow areas off Sandbridge, Virginia.

	All	are	NAD	1983
--	-----	-----	------------	------

Borrow Area A

NE Corner State Plane, ft. N 3439350 E 12255330

Lat Long d m s 36 44 20.71403 075 51 49.29479

d m 36 44.345 075 51.822

NW Corner State Plane, ft. N 3442070 E 12249483

Lat Long d m s 36 44 49.20672 075 53 00.17432

d m 36 44.820 075 53.003

SE Corner State Plane, ft N 3436800 E 12255330

Lat Long d m s 36 43 55.50997 075 51 50.16946

d m 36 43.925 075 51.836

SW Corner State Plane, ft N 3436802 E 12249483

Lat Long d m s 36 43 57.13779 075 53 01.96781

d m 36 43.952 075 53.033

Borrow Area B

NE Corner State Plane, ft N 3452440 E 12254600

Lat Long d m s 36 46 20.41249 075 51 54.11446

d m 36 46.340 075 51.902

Western End State Plane, ft N 3447250 E 12249080

Lat Long d m s 36 45 46.51629 075 53 03.36072

d m 36 45.775 075 53.506

SE Corner State Plane, ft N 3443100 E 12254800

Lat Long d m s 36 44 57.92513 075 51 54.51787 d m 36 44.965 075 51.909

Table 3. Spring 1996 SPI analysis.

		Virgi	nia B	each Sa	ındmini	ng Proj	ect SPI	visual	analysis:	Spi	ring,	Surfac	e struc	t.									-	
							Sed.	Sed.	Relief			Tube	s	Subsuri		Infauna		Void	ls					-
				Date	PEN	RPD	Туре	Rel.	Туре	Epif	auna	+/-	Pelleta	Shell	#	Туре	Depth	1 #	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	96	(cm)	(cm)		(cm)		(+/-)													
-75.94	36.882	1	A 2	spr	5.2	5.2	VFS-SI	1.6	BD, TUBES	+	CLAM	75	+	TRACE	C	1)	0	
-75.93	36.882	3	в 2	spr	11			0.25		-		22	+	TRACE	4	WORM	5,7.5	5 (0		c		0	
-75.92	36.882	5		spr	6.5			1.5		_		15		TRACE	1	WORM	1.5	5 (0		c		- 0	
-75.91	36.882	7	A 2	spr	5.4			1.4									_	ļ						
-75.91	36.882	7	в 2	spr	7.2	5	cs	0.8	BD	-		3		NONE	0			()		c)	0	
-75.91	36.882	9		spr	3.9			2.3		-														
-75.91	36.882	9	B 1	spr	5.8	5.8	cs	2	BD			0	+	NONE	0			(С		11	ох
-75.93	36.878	12	В 2	spr	10	3	VFS-SI	0.5	BD, TUBES	-		113	+	NONE	6	WORM	1.5,4	. (c		1	ох
-75.93	36.878	14	в 2	spr	15.25			1.75		-		24	+		3	WORM	3	3 ()				0	
-75.92	36.878	16	A 2	spr	9.5			1		_		67	+		6	WORM	3	3 (0		0		0	
-75.91	36.878	18	A 2	spr	4.2			4									-							
-75.91	36.878	18	в 1	spr	6.3	2.6	VFS-SI	3	BD, TUBES	-		8	+	TRACE	2	WORM	2,4	()		0		0 .	
-75.9	36.878	20	A 2	spr	4.7			11																
-75.9	36.878	20	B 2	spr	7.2	7.2		0.7				3	+	TRACE	0)		0		0	
-75.94	36.874	21	В 2	spr	7			2		-		17		TRACE	0			0)		0		0	
-75.93	36.874	23	B 2	spr	11			1.25		-		76	IND		2	WORM	3,8.5				0	ļ	0	***************************************
-75.92	36.874	25	В 2	spr	10	:		6					IND	TRACE	0			- 0			0		0	
-75.91	36.874	27	В 2	spr	8			1.75		_			IND	TRACE	0			C)		0		0	
-75.9	36.874	29		spr	6.5			1.7					IND	TRACE	0			C)		0		0	
-75.93	36.87	32	В 2	spr	11	2	VFS-SI	0.3	BD, TUBES	-		18	+	TRACE	5	WORM	2.5,3	c)		0		0	
-75.92	36.87	34	в 2	spr	7			5.25		-		1	IND					C)		0		0	

Table 3. Spring 1996 SPI analysis.

		Virgin	4 a B	each C	andmini	na Brod	oct CDT		analysis:	Cm		GE												
		Viigin	1 D	each S	andin and	ng Floj	Sed.	Sed.	Relief	.پړد	ring,	Tube			T E									
			-	Date	PEN	RPD	Туре	Rel.		Ton i d	auna			Subsuri	Infa			Void:				_		
			Щ.				туре		Type			+/-	Pellet	snell	# Тур	e De	pth	#	Туре	Depth	Gas	Depth	Burrow	Туре
		cell			(cm)	(cm)		(cm)		(+/-	.)													
-75.92	36.87	36	3 2	spr	11.75			2.75				0	+					0			0		0	~~
-75.91	36.87	38	A 2	spr	7			3		-		2	+	TRACE	1 WOR	M 6	.75	0			0		0	
-75.9	36.87	40 I	3 2	spr	4			1.8		_		0	+	TRACE	1 WOR	м	4	0			0		0.	
-75.93	36.867	41 I	3 2	spr	4	4	VFS-FS	0.3	BD, TUBES			4	-	TRACE	0			0			0		0	
-75.93	36.867	43 I	3 2	spr	13.5	9	FS	1.2	BD, TUBES	+	GAST	1		NONE	0			0			0		1	ox
-75.92	36.867	45		spr	9.5			2.5				1	IND	TRACE	0			0			0		0	÷
-75.91	36.867	47		spr	6.75			1.5		_		0	+	1	1 UNI	D	1	0			0		0	
-75.9	36.867	49 I	3 2	spr	9.25			1.5		_		4	+	TRACE	0			0			0		0	
-75.93	36.862	52 I	3 2	spr	13	4	SI-VFS	1	BD, TUBES	_		37	+	TRACE	4 WOR	м з.	5,9	0			0		0	
-75.92	36.862	54 E	3 2	spr	10	10	MS	5	BD			0	_	NONE	0		-,-	0			0		0	
	36.862	56 I			7			4		+		2	+	TRACE	0			0						
	36.862	58 I			5.75	,		0.25		+		1	+								0		0	
				-										TRACE	0			0			0		0	
	36.862		3 2					1.7		-		0	+	TRACE	0			0			0		0	
-75.92	36.858	63 I	3 2	spr	11	2.1	FS	0.8	BD, TUBES			18	+	TRACE	1 WORI	M	5	0			0		11	OX
-75.92	36.858	65 E	3 2	spr	. 8	8	FS-MS	2	BD, DEBRIS	_		0	-	TRACE	0			-			0		0	
-75.91	36.858	67 E	3 2	spr	10			2.5				0	IND	0	0			0			0		0	
-75.9	36.858	69 I	3 2	spr	9.5			0.5				2	+	TRACE	0	-		0			0		0	· · · · · · · · · · · · · · · · · · ·
-75.93	36.854	72 H	3 2	spr	5	2	FS	0.5	BD, TUBES			30	+	TRACE	0			0			0		0	
-75.92	36.854	74 E	3 2	spr	10	10	MS	4.6	BD			0		TRACE	1 WOR	1	0.8	0			0		0	
-75.91	36.854	76 E	3 2	spr	6.5	6.5	FS	1.9	BD	-		0	_	TRACE	0			0			0		0	
-75.9	36.854	78 E	3 2	spr	19			1		-		38	+		3 WORM	1 3.0	6,10	0			0		0	

Table 3. Spring 1996 SPI analysis.

1								+																
		Virgi	nia	Beach S	andmini	ng Proj			analysis:	Sp:	ring,					1								
							Sed.	Sed.	Relief			Tube		Subsuri		Infauna		Void		1				
				Date	PEN	RPD	Туре	Rel.	Type		auna	+/-	Pellet	sShell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	96	(cm)	(cm)		(cm)		(+/-	.)													
-75.89	36.854	8	0 B	2 spr	7			0.25		+		0	IND	TRACE	0)		()		0		0	
-75.92	36.851	8:	3 B	2 spr	18	0.7	SI	3.5	BD, TUBES			8		NONE	5	WORM	5,9,12	()		0		1	ox
-75.91	36.851	8	5 B	2 spr	10	10	MS	2.8	BD	_		0	_	NONE	0)	-	()		0		0	
-75.91	36.851	8	7 B	2 spr	8.8	4.3	FS	1	BD	_		1	-	NONE	0)		()	-	0		0	
-75.9	36.851	8:	9 B	2 spr	8			4.25		-		0	_	TRACE	2	WORM	3,3	(0		0	
-75.92	36.847	9	4 B	2 spr	7	7	FS-MS	1.7	BD			2		TRACE	0)		(0		0	-
-75.91	36.847	9	6 B	2 spr	6	6	FS	1.5	BD, TUBES	_		4	+	1	. 0)		c)		0		, 0	
-75.9	36.847	9:	8 B	2 spr	6.5	6.5	FS	1.3	BD, SHELL	+	GAST	0	-	TRACE	. 0)		Ċ)		0		0	
-75.89	36.847	104	0 B	2 spr	5			1		_		2		TRACE	0						0		0	
-75.89	36.843	109	9 B	1 spr	4.3	4.3	FS	0.5	BD	_		0	_	NONE	0						0		0	
-75.89	36.839	120	0 B	2 spr	10	1		1		_		0	_	NONE	0					2.2,4.5			0	
-75.92				spr	~			4											0011,111	2.2,1.				
	36.836		3 A					1.1																
	36.836		3 B			1.6	ne	0.9	BD, SHELL	_		0	_	mp v on	0									
						1.0	FS		BD, SHELL			0		TRACE	0	<u> </u>		C)		0		0	
-75.92				spr				1.5																
-75.91				2 spr		6.2	FS		BD			0		NONE	0			С)		0		0	
-75.91	36.832	134	4 B	2 spr	7.3			0.6																TO A CONTRACT OF THE CONTRACT
-75.89	36.832	140	0 A	2 spr	6.2	6.2		1.1				0		TRACE	0			C			0		0	
-75.92	36.828	14	1	spr	4			1.9																
-75.91	36.828	143	3 A	2 spr	1.5			2.8																
-75.91	36.828	143	3 B	2 spr	6	2	SI-FS	2.3	BD, TUBES	_		13		1	2	WORM	2,2	0			0		0	

Table 3. Spring 1996 SPI analysis.

		Virgin	ia B	each Sa	andmini	ng Proj	ect SPI	visual	analysis:	Spr:	ing,	Surfac	e struc	t.										
							Sed.	Sed.	Relief			Tube		Subsuri		Infauna		Void	ls					
				Date	PEN	RPD	Туре	Rel.	Туре	Epifa	una	+/-	Pellet	Shell	#	Type	Depth			Depth	Gas	Depth	Burrow	Туре
ON	LAT	cell	rep	96	(cm)	(cm)		(cm)		(+/-)														
-75.91	36.828	145	A 2	spr	6	6	FS-MS	3	вр	-		0	_	NONE				C			0		0	
-75.92	36.824	152	A 2	spr	2.9			2.9																
-75.91	36.824	154	A 2	spr	4.3			3																
-75.91	36.824	154	В 2	spr	5	5		2.2				0	_	TRACE	C			C)		0		0	
-75.9	36.824	156	A 2	spr	2.8			2.5																
-75.9	36.824	156	В 2	spr	6.7	6.7		1.3		-		0	_	TRACE	C			C)		0		0	· · · · · · · · · · · · · · · · · · ·
-75.92	36.82	161	A 2	spr	3.5			1.6																:
-75.91	36.82	163	A 2	spr	1.5			2																
-75.9	36.82	165	A 2	spr	0.9			2.4																
-75.9	36.82	165	B 2	spr	5.2	5.2	FS	2.1	BD	-		0	_	TRACE	0)		0)		0		0	
-75.9	36.82	167	A 2	spr	6.2			1.4															-	***
-75.9	36.82	167	В 2	spr	8.4	8.4	MS-CS	1.4	BD	_		0		TRACE	0)		0)		0		. 0	
-75.91	36.816	172	A 2	spr	4.7			2.2																
-75.91	36.816	174	A 2	spr	. 3			1.4															·	
-75.9	36.816	176	A 2	spr	4.3			1.3							***							9		
-75.9	36.816	176	В 2	spr	6.9	6.9	FS	1.9	BD	+ G	GAST	0	-	NONE	0			-			0		0	
-75.89	36.816	178	A 2	spr	4.8			0.6			,													
-75.89	36.816	178	В 2	spr	7.3	7.3	FS	0.6	BD, TUBES	-		5		NONE	1	WORM	1	1	ox	2.5	0		0	
-75.92	36.812	181	A 2	spr	3.3		***	2.4																
75.91	36.812	183	A 2	spr	4.5			1.5													-			
-75.9	36.812	185	A 2	spr	8.6			1.8																

Table 3. Spring 1996 SPI analysis.

		Virgini	a Be	each Sa	ındmini	ng Proj	ect SPI	visual	analysis:	Sp	ring,	Surfac	e struc	t.									-	
							Sed.	Sed.	Relief			Tube		Subsuri		·Infauna-		Void	.s					
company of the				Date	PEN	RPD	Туре	Rel.	Туре	Epii	auna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
ON	LAT	cell r	ер	96	(cm)	(cm)		(cm)		(+/-	-)													
-75.89	36.812	187 A	. 2	spr	3.7			1.3																
-75.89	36.812	187 B	2	spr	6.2	4.5	FS	1.1	BD	+	GAST	0		NONE	0			0	,		0		0	
-75.9	36.808	194 A	2	spr	6.2			1																
-75.9	36.808	196 A	. 2	spr	2.3			1.5																
-75.89	36.908	201	1	spr	3.5	11	F-MS	2.5	BD	N		Y	N	1	0)		0			0		0	
-75.89	36.908	201 2	2	spr	4.5	1.5	F-MS	2	BD	N		N	N	1	0)		0			0		0	
-75.88	36.908	203	1	spr	3,5	1.5	F-MS	2	BD	N		N	N	1	0)		0			0		0	
-75.88	36.908	203	2	spr	7	1.5	F-MS	1	BD	Y?		Y	N	1	1?	? ?	3	0			0		IND	
-75.87	36.908	204	1	spr	2.5	ALL	F-MS	1.5	BD	N		N	N	0.5	0			0			0		0	
-75.87	36.908	205	1	spr	3	1	F-MS	1.25	BD	N		N	N	0.25	0)		0			0		1?	ox
-75.87	36.908	205	2	spr	2.5	1	F-MS	1.25	BD, SH, TUBE	1,HC		Y,1	N	0.5	0)		0			0		0	
-75.86	36.908	207 1	1	spr	3.75	1	F-MS	1	BD	N		Y	N	1	1?	WORM?		3.5	·		. 0		0	
-75.86	36.908	207 2	2	spr	5.5	1	F-MS	1.5	BD	N		N	N	1	0			0			0		1	OX
-75.85	36.908	209 1	1	spr	1.5	ALL	F-MS	0.5	BD,BIO	KU		N	N	0.5	0			0			0		0	
-75.85	36.908	209 2	2	spr	2.75	0.5	FS	1.5	BD	N		N	N	0.25	0)		0			0		IND	
-75.85	36.908	209 3	3	spr	4.5	0.5	FS	0.5		N		Y	N	1	0)		0			0		IND	
-75.88	36.905	212	1	spr	4	1.5	F-MS	1.5	BD	N		N	N	0.5	. 0)		0			0		0	
75.88	36.905	212 2	2	spr	4	1.5	F-MS	2	BD	?		N	N	0.5	0)		0			0		0	
-75.87	36.905	214 1	ı	spr	5	1	F-MS	1.5	BD	N		N	N	1	0)		0			0		0	
-75.87	36.905	214 2	2	spr	4	1	F-MS	2	вр	N		Y*	N	1	0			. 0			0		0	, , , , , , , , , , , , , , , , , , ,
-75.86	36.905	216	1	spr	3.5	ALL	F-MS	2	BD	N		N	N	0.5	0			0			0		0	•

Table 3. Spring 1996 SPI analysis.

		Virgin	nia B	each Sa	ındmini	ng Proj	ect SPI	visual	analysis:	Spring.	Surfac	e struc									The state of the s		
							Sed.	Sed.	Relief		Tube		Subsur		-Infauna		Void	ls					
				Date	PEN	RPD	Туре	Rel.	Туре	Epifauna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Type
LON	LAT	cell	rep	96	(cm)	(cm)		(cm)		(+/-)													
-75.86	36.905	216	1	spr	2.5	1	F-MS	1	BD, PT?	N	N	Y?	0.5		0		0)		0		0	
-75.86	36.905	216	2	spr	2.25	0.5	F-MS	0.5		N	Y,1	N	0.5		0		0)		0		0	
-75.85	36.905	220	1	spr	3.5	2	F-MS	1.25	BD, SH, CL	N	N?	N	0.25		0		0)	-1-	0		0	
-75.85	36.905	220	2	spr	3.5	2	F-MS	1.25	BD	N	N	N	0.5	1?	WORM?	2	0)		0		0	
-75.88	36.902	221	3	spr	<1	NA	F-MS	NA	BD, SH	N	N	N	NA	NA			NA			0		0A	
-75.87	36.902	223	1	spr	4	1.5-2	F-MS	3	BD	N	Y*	N	0.5		0		0			0		0	
-75.87	36.902	223	2	spr	6	1.5-2	F-MS	2	BD	N	N	N	0.25		0		0			0		0	
-75.87	36.902	223	3	spr	4	2	F-MS	2.5	BD	N	N	N	0.25		0		0			0		0	
-75.87	36.902	225	1	spr	4.5	1.5-2	F-MS	2.5	BD	N	N	N	0.5		0		0			0		0	
-75.87	36.902	225	2	spr	3.5	1-1.5	F-MS	1.5	BD	N	Y*	N	1		0		0			0		0	
-75.86	36.902	227	1	spr	3	2-ALL	F-MS	0.25		N	N	N	0.5		0	-	0			0		0	
-75.86	36.902	227	2	spr	3.5	1.5	F-MS	0.5		N	Y	N	1		0		0			0		0	
-75.85	36.902	229	1	spr	3.25	0.5	F-MS	<.5	SH,CL	N	N	N	1		0		0			0		0	
-75.85	36.902	229	2	spr	3	0.5	F-MS	0.5	BD, SH	N	N	N	0.5		0		0			0		2	71. Y.Y.
-75.88	36.898	232	1	spr	3.5	1-1.5	F-MS	1.5	BD	N	N	N	0.5	(0		0			0.		0	
-75.88	36.898	232	2	spr	6	1-1.5	F-MS	1	BD	N	N	N	1		0		0			0		0	
-75.88	36.898	232	3	spr	4	1.5	F-MS	2	BD	N	N	N	0.25		0		0			0		0	
-75.87	36.898	234	1	spr	4	1-1.5	F-MS	11	BD	N	N	N	0.25	(0		0			0		0	
-75.87	36.898	234	2	spr	3.5	1-1.5	F-MS	2	BD	N	N	N	0.25	(0		0			0		0	
-75.86	36.898	236	1	spr	4	1.5	F-MS	2	BD	N	N	N	0.25	(0		0			0		0	
-75.86	36.898	236	2	spr	3.5	2	F-MS	1.5	BD	N	N	N	0.5	(0		0			o		0	

Table 3. Spring 1996 SPI analysis.

		Virgi	nia B	each Sa	ındmini	ng Proj	ect SPI	visual	analysis:	Spring,	Surfac	e struc	t.										-
						-	Sed.	Sed.	Relief		Tube	s	Subsuri		Infauna		Void	s					-
	-			Date	PEN	RPD	Туре	Rel.	Туре	Epifauna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	96	(cm)	(cm)		(cm)		(+/-)													
-75.8	6 36.898	236	3	spr	3	1.5	F-MS	1	BD	N	N	N	0.25	0			0			0		0	
-75.8	5 36.898	238	1	spr	5	1.25	F-MS	0.25		N	Y	N	0.5	2	WORM		0			0		1	OX
-75.8	5 36.898	238	2	spr	3.75	1	F-MS	0.3		N	Y,1	N	0.5	0			0			o		0	
-75.8	4 36.898	240	1	spr	3.5	2-ALL	F-MS	1	BD,SH,CL	N	N	N	1	0			0			0		0	
-75.8	4 36.898	240	2	spr	4	2-ALL	F-MS	2	BD	N	Y	N	0.5	0			0			0		⁻ 0	
-75.8	7 36.894	243	1	spr	4	1.5-2	F-MS	1.75	BD	N	N	N	0.5	0			0			0		0	
-75.8	7 36.894	243	2	spr	5.5	1.5	F-MS	1.5	BD	N	1	N	0.5	0			0			0		0	
-75.8	6 36.894	245	2	spr	4	1.5-2	F-MS	3	BD	N	N	N	0.5	0			0			0		0	
-75.8	6 36.894	247	1	spr	3.5	2.5	F-MS	2	BD	N	N	N	0.5	0			0			0		0	
-75.8	6 36.894	247	2	spr	3.5	2	F-MS	2.5	BD	?,UNID	N	N	0.5	0			0			0		0	-
-75.8	5 36.894	249	1	spr	3.5	1.5	F-MS	1.5	BD	N	Y?	N	1	0			0			0		0	
-75.8	5 36.894	249	2	spr	3.5	2	F-MS	1.5	BD	N	Υ?	N	1	0			0			0		0	
-75.88	36.891	252	1	spr	5.5	2-2.5?	F-MS	0.5		N	N	N	1	0			3	SMALL,	OX, AN	0		1	ACTIVE
-75.8	36.891	252	2	spr	3	1-1.5?	F-MS	0.5		N	Y?,1	N	0.5	0			0			0		0	
-75.8	7 36.891	254	1	spr	6	1.5-2	F-MS	1.5	BD	N	1	N	0.5	0			0			0	-	0	
-75.8	7 36.891	254	2	spr	6	1.5-2	F-MS	1	BD	N	N	N	0.5	0			0			0		0	
-75.86	36.891	256	1	spr	4	2	F-MS	3	BD	N?	N	N	0.5	0			0			0		0	
-75.86	36.891	256	2	spr	3.5	1.5-2	F-MS	2	BD	Y?	N	N	0.25	0			0			0		0	
-75.85	36.891	258	1	spr	3.5	1.5	F-MS	1.8	BD	N	N	N	0.5	0			0			0		0	
-75.85	36.891	258	2	spr	3.5	2	F-MS	0.8		N	?	N	0.5	0			0			0		0	######################################
-75.85	36.891	258	3	spr	3	1.5	F-MS	2	BD	N	N	N	1	0			0			0		0	

Table 3. Spring 1996 SPI analysis.

		Virgir	ia B	each Sa	ındmini	ng Proj	ect SPI	visual	analysis:	Spring,	Surfac	e struc	et.									
							Sed.	Sed.	Relief		Tube	s	Subsuri		Infauna		Voids					
				Date	PEN	RPD	Туре	Rel.	Type	Epifauna	+/-	Pellet	s Shell	#	Туре	Depth	# Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	96	(cm)	(cm)		(cm)		(+/-)												
-75.84	36.891	260	1	spr	4	2	F-MS	1.5	BD	N?	N	N	1	0			0		0		0	
-75.84	36.891	260	2	spr	3.5	1.5	F-MS	1.5	BD	N?	N	N	0.5	1?	WOR	4	1		0		0	
-75.88	36.887	261?	1	spr	3.75	0.5	F-MS	0.5		N	Y, MANY	N	.125	1	WORM?	2	0		0		1	OX SUBTUBE
-75.88	36.887	261?	2	spr	3	0.5	F-MS	0.5	BIO MOUND?	N	Y, MAN	N	0.1	0			0		0		1	ox
-75.86	36.887	265	1	spr	3.5	2-2.5	F-MS	2	BD	N	N	N	0.5	0			0		0		.0	
-75.86	36.887	265	2	spr	5	2	F-MS	2	BD	N	N	N	0.5	0			0		0		0	
-75.85	36.887	267	1	spr	5	1.5-2	F-MS	2	BD	N	N	N	1	0			0		0		1	
-75.84	36.887	269	1	spr	3.5	2.5	F-MS	1	BD	N	N	N	0.5	0			0		0		0	
-75.84	36.887	269	2	spr	3	2	F-MS	1	BD	,UNID	N	N	0.5	0			0		0		0	
-75.86	36.883	276	1	spr	4	1-2	F-MS	2	BD	N	Y	N	0.25	. 0			0		0	-	- 0	
-75.86	36.883	276	2	spr	3.5	1-2	F-MS	0.5	BD	N	N	N	0.25	0			0		0		0	
-75.85	36.883	278	1	spr	3.5	2	F-MS	1.5	BD	N	N	N	0.5	0			0		0		0	
-75.85	36.883	278	2	spr	3.5	2	F-MS	0.5		N	N	N	0.5	0			0		0		0	
-75.84	36.883	280	1	spr	3	2	F-MS	2	BD	N	N	N	1	0			0		0		0	
-75.84	36.883	280	2	spr	3.5	2	F-MS	1	-	N	N	N	1	0			0		0		0	
-75.88	36.878	281?	1	spr	5	,575	F-MS	0.75	SLOPE	N	Y, MANY	Y?	0.25	1	WORM	1.5			0		2	OX, ACT
-75.88	36.878	281?	2	spr	6	1.5	F-MS	0.5	BIO MOUND	Y?	Y, MANY	N?	0.1	0			0		0		2	ox
-75.85	36.878	287	1	spr	4.5	1.5	F-MS	0.5		N	N	N	0.1	0			0		0		0	-
-75.85	36.878	287	2	spr	5	1.5	F-MS	0.5-1		N?	Y	N	0.25	0			0		0		1	
-75.84	36.878	289	2	spr	3	1-1.5	F-MS	0.5		N	N	N	0.1	0			0		0		1	
-75.84	36.878	289	3		3.5		F-MS	0.5		нс	1	N	0.1	0			0		0		0	

Table 3. Spring 1996 SPI analysis.

		Virgin	ia B	each Sa	andmini	ng Proje	ect SPI	visual	analysis:	Spring,	Surface	e struc	st.										
							Sed.	Sed.	Relief		Tube		Subsuri		Infauna-		Void	s					
				Date	PEN	RPD	Туре	Rel.	Type	Epifauna	+/-	Pellet	sShell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	96	(cm)	(cm)		(cm)		(+/-)													
-75.84	36.874	298	1	spr	3	1.5	F-MS	0.5		N	N	N	0.1	0			0			0		0	
-75.84	36.874	298	2	spr	3	1.5-2	F-MS	0.5		N	Y	N	0.1	0			0			0		0	
~75.84	36.874	300	1	spr	4	1.5-2	F-MS	2	BD	N	Y	N	0.1	0			0			0		0	
-75.84	36.874	300	2	spr	3.5	1.5	F-MS	1.5	BD	?	Y	N	0.1	0			0			0		1	
-75.9	36.761	301	1	spr	5	ABNORMA	SI-VFS	0.75	BIO?	N	Y, MANY	Y	0.1	0			0			0		0	
-75.9	36.761	301	2	spr	2.5	NA	SI-VFS	3	BIO PIT?	N?	Y, MANY	Y	0.1	0			0			0		1	ox
-75.9	36.761	303	1	spr	3.5	1.5	VFS-FS	1	BEDF/RIP	N?	Y,FEW	Y	0.1	1?			0			0		0	
-75.9	36.761	303	2	spr	3	1	VFS-FS	0.75	MND, TUBE	N	Y,SOME	Y	0.1	0			0			0		1	OX SUBTUBE
-75.89	36.761	305	1	spr	4	ALL	MS*	2	BEDF	N	N	N	0.25	0			0			0		. 0	
-75.89	36.761	305	2	spr	9	8.5	MS-CS	8	BEDF*	N	N	N	1	0			0			0		0	
-75.88	36.761	307	. 1	spr	6	ALL	MS-CS	1	BEDF	N	N	N	0.5	0			0			0		0	
-75.88	36.761	307	2	spr	8	ALL	MS-CS	3	BEDF	N	N	N	0.1	0			0			0		0	
- 75.9	36.758	312	1	spr	2.5	0.75	VFS-FS	1.5	SLOPE, TUBE	N?	Y,FEW	Y	0.05	0			0			. 0		0	
-75.9	36.758	312	2	spr	2.5	0.5	FS	2.5	BEDF, TUBES	N	Y, MANY	N	0.05	2*	WORMS	TUBE :	0			0		0	
-75.89	36.758	314	1	spr	NA	NA	sı	NA	NA	NA	NA	NA	0.1	3-4	WORM	NA	1	AN		0		2	OX,ACT
-75.89	36.758	314	2	spr	10?	IND	SI	NA	TUBES	N	Y,>50	Y	0.01	10	WORMS I	1 1 - 3	0			0		19	OX SUBTUBE
-75.88	36.758	316	1	spr	6	ALL	MS-CS	1.75	BEDF	N	N	N	0.5	. 0			0			0		0	
-75.88	36.758	316	2	spr	7	ALL	MS-CS	3	BEDF, CLAST	N	N	N	1	0			0			0		0	
~75.9	36.753	321	1	spr	1	NA	FS?	0.75	BIO, TUBES	N	Y,SOME	N	IND	IND			IND			0		0 .	
-75.9	36.753	321	2	spr	2.25	1	FS	0.5	BIO, TUBES	N	Y, MANY	N?	0.05	11	WORM	1.5	0			0		0	
-75.89	36.753	323	1	spr	3.5	1	FS	0.5	BIO, TUBE	N	Y,4	Y	0.05	1	WORM/TU	1.5	0			0		2	ох

Table 3. Spring 1996 SPI analysis.

		Virgir	nia B	each Sa	ndmini	ng Proj	ect SPI	visual	analysis:	Spring,	Surfac	e struc	t.										
							Sed.	Sed.	Relief		Tube	s	Subsuri		Infauna-		Void	ls					
				Date	PEN	RPD	Туре	Rel.	Type	Epifauna	+/-	Pellets	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
ON	LAT	cell	rep	96	(cm)	(cm)		(cm)		(+/-)											5		
-75.89	36.753	323	2	spr	4.5	1.5	FS	1	BEDF, TUBE	N	Y, FEW	Y	0.05	C						0		2	OX
75.89	36.753	325	1	spr	4.5	4.4	MS-CS	1.75	BEDF	N	N	N	0.25)					0		0	
75.89	36.753	325	2	spr	7.5	ALL	MS-VCS	3.5	BEDF	N	N	N	0.25	C						0		0	
-75.9	36.75	332	1	spr	3.5	1	FS		BIO, TUBES		Y. 7	Y	0.05				Ì			0			OV
-75.9				spr	2.5	0.3	FS		BIO, TUBES		Y,8-10		0.05		WORMS/TU	0 5 3						1	OX
75.89		334		spr		ALL	MS-GRV	1	BEDF, SHELL		N N	N	0.05			0.5,2				0		4	1ACT,30X
	36.75			_	3.5												(0		. 0	
						ALL	MS-GRV		BEDFSLOPE		N	N	0.25	C			(0		0	
	36.746			spr		0.3	SI-VFS		BIO, TUBES		Y,6	Y	0.05	1-2	WORMS/TO	0.5)		0		IND	
	36.746		2	spr	3.5	0.5?	SI-VFS	1.25	BIO, TUBES	N	Y,10	Y	0.05	2	WORMS	2	C)		0		5	3ACT, 20X
75.89	36.746	343	1	spr	7	1.25	SI-VFS	1.5	BIO, TUBE	N ·	Y,10-1	IND	0.1	1	WORM	3	C			0	-	5	OX,ACT
75.89	36.746	343	2	spr	8	1.25	SI-VFS	0.75	SLOPE, TUBE	N	Y,10-1	Y	0.1	0)					0		8	ОХ
75.89	36.742	352	1	spr	5.5	1	VFS-FS	1	BEDF?, TUBES	N	Y,10-1	Y?	0.05	0			С)	-	0		3	ох
75.89	36.742	352	2	spr	3.5	0.5	VFS-FS	1	MD, TUBES	UNID?	Y,10-1	Y	0.01	0	1		С)		0		. 3	ох
-75.9	36.738	361	1	spr	3.75	1	VFS-FS	0.75	BEDF, TUBES	N?	Y,3	IND	0.01	1	WORM	2.5	С	1		0		1	ACT
75.89	36.733	372	1	spr	3.75	0.25	VFS-FS	0.5	MD, TUBES	N	Y,10-2	Y?	0.1	1.	WORM	2	C			0		3	OX,SUBTU
75.89	36.733	372	2	spr	6.5	1.5	SI-FS	1	MD, TUBES	N	Y,>15	IND	0.01	1	WORM	3	0			0		2	OX, SUBTU
75.89	36.73	381	2	spr	4	0.5	VFS-FS	0.5	MD, TUBES	N	Y,6	IND	0.01	0			. 0			0		3	ox
75.89	36.73	381	1	spr	4	0.75	VFS-FS	1	MD, TUBES	N	Y,3	Y	0.1	0			0			0		1	ox

Table 4. Fall 1996 SPI analysis.

		Virgi	nia 1	Beach S	andmini	ng Proj	ect SPI	visual a	analysi	s: Fal	Surface	e stru	ct.										
							Sed.	Sed.	Relief		Tubes	s	Subsurf		-Infaur	a	Voids	1.00					
		;		Date	PEN	RPD	Туре	Rel.	Туре	Epifau	+/-	ellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	96	(cm)	(cm)		(cm)		(+/-)												-	
-75.939	36.882	1		fall	5.5	2		1.75			0	Pos.	None	C)		0)		0			
-75.932	36.882	3		fall	7.25	1.75		3.25		-	0	Pos.	2		Worm	4.75	0			0			
-75.906	36.882	9		fall	19			1		+	0	None	Trace	2	Worm	16.5	0			0			
-75.934	36.8783	12		fall	7	2		0.5			0	Pos.	None	()		0)		0			
-75.926	36.8783	14		fall	6.75	6.75		2		+	0	None	Trace	(0			0			
-75.918	36.8783	16	1b	fall	22	2.25		2			1	None	None	2	Worm	1.0	0			0			
-75.909	36.8783	18	1b	fall	11			0.5		_	0	None	Trace	C)		0			0			
-75.9	36.8783	20		fall	9			3.25		+	.0	None	Trace	C)	:	0			0			<u></u>
-75.937	36.8742	21		fall	4.75	1.25		1		_	8	Pos.	1	C)		0			0			<u> </u>
-75.928	36.8742	23		fall	9.5	4.5		1.25		-	2	None	None	С)		0			0			
-75.92	36.8742	25		fall	17.25	1.75		1		+	8	None	None	1	Worm	13	0			0		-	
-75.912	36.8742	27		fall	7.5			2.5		-	0	None	Trace)		0			0		ļ ·	
-75.903	36.8742	29		fall	8			3			0	None	Trace	C			0			0			-
-75.932	36.87	32		fall	8	3.5		2		+	8	None	None				0			0			
-75.923	36.87	34		fall	7.5	7.5		1		-	0	None	Trace		-		0	1		0			
-75.915	36.87	36		fall	6			2		_	0	None	None	0			0		-	0			
-75.908	36.87	38		fall	14	1.25		1.25		_	0	Pos.	4	. 0			0			0			
-75.898	36.87	40		fall	12.25			2		-	0	None	Trace	0			0			0			-
-75.934	36.8667	41		fall	4.5	2		3	1	_	1	Pos.	1	0			0			0			ļ
-75.926	36.8667	43		fall	16.25			1			6	None	None	1	Worm	14	0	-		0			
-75.918	36.8667	45		fall	11			2.5		-	0	None	None	0			0			0			

Table 4. Fall 1996 SPI analysis.

		Virginia :	Beach S	andmini	ng Proj	ect SPI	visual a	analysi	s: Fal	Surface s	ruct.											
						Sed.	Sed.	Relief		Tubes	Subs	urf		Infaur	1a	Voids						
			Date	PEN	RPD	Туре	Rel.	Туре	Epifau	+/- ell	et. She	11	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell rep	96	(cm)	(cm)		(cm)		(+/-)													
-75.91	36.8667	47	fall	12.75	4		1			0 Nor	e Trac	e	0				0		C)		
-75.902	36.8667	49	fall	. 8			4.75		_	0 Nor	e None		0			,	0		C)		
-75.928	36.8622	52	fall	19.25	2.75		0.5		_	0 Nor	e None		4	Worm	10 &18		0		c)		
-75.921	36.8622	54	fall	11			1.25		-	0 Nor	e None		0				0		C)	,	
-75.913	36.8622	56	fall	11.5			9			0 Nor	e None		0				0		C			
-75.903	36.8622	58	fall	18			1.75		-	8 Nor	e Trac	е	4	Worm	10.5	(0		C			
-75.929	36.8622	60	fall	4.25	4.25		1.5		_	0 Nor	e Trac	e	0				0		C			}
-75.932	36.8583	61	fall	4.5	2		2		_	4 Pos	. Trac	Э	0			(0		0			
-75.924	36.8583	63	fall	17.25			2		_	3 Nor	e None		6	Worm	14	. (0		0			
-75.916	36.8583	65 1b	fall	6.25			3		-	0 Nor	e None		0				2		0			
-75.908	36.8583	67	fall	12			5			0 Non	e Trac	e	0			(0		0			
-75.899	36.8583	69	fall	6.5	5		1.5		~	0 Nor	e Trac	э	0			(0		0			
-75.926	36.8542	72	fall	1.0			1		-	2 Non	e None		1	Worm	5	()		0			
-75.918	36.8542	74	fall	5.5	5.5		2		-	0 Non	e None		0			(D		0			
-75.91	36.8542	76	fall	7			2.25		-	0 Non	e None		0						0			
-75.902	36.8542	78	fall	10	4.25		0.25			0 Pos		1	2	Worm	8				0			
-75.893	36.8542	80	fall	6.25	6.25		1.25		_	0 Non	e None		0				0		0			
-75.93	36.8508	81 1b	fall	6			1		-	0 Non	e None		0			(0			
-75.922	36.8508	83	fall	16	1.75		0.5			7 Pos	. None		1	Worm	9.5	(0			
-75.913	36.8508	85	fall	8			4		+	0 Non	e Trace	2	0						0			
-75.905	36.8508	87	fall	4.5	1.75		1.25		_	0 Non	e Trace		0			c			0			

Table 4. Fall 1996 SPI analysis.

		Virgi	nia 1	Beach S	andmini	ng Proj	ect SPI	visual a	analysi	s: Fal	Surface	stru	ct.									-	
							Sed.	Sed.	Relief		Tubes		Subsurf		Infau	na	Voids						
				Date	PEN	RPD	Туре	Rel.	Туре	Epifau	+/-	ellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	96	(cm)	(cm)		(cm)	1	(+/-)								-					
-75.896	36.8508	89		fall	6.25	6.25		2		_	0 1	None	Trace	0))		0			
-75.923	36.8467	92		fall	6.5	6.5	****	. 2		_	1 0	None	Trace	0)		()		0			
-75.917	36.8467	94		fall	6			4		_	1 0	None	Trace	0))		0			
-75.908	36.8467	96		fall	13	2.5		0.75		_	8 I	Pos.	Trace	0)		(,		0			
-75.899	36.8467	98		fall	9.5	3.75		1		_	0 1	Pos.	Trace	0))		0			
-75.891	36.8467	100		fall	5.75	2		1.5		-	11	None	10	0))		0			
-75.927	36.8433	101		fall	4.5	2.5		0.75		-	0	Pos.	None	0						0			
-75.919	36.8433	103		fall	14			1.25		+	0 1	Pos.	None	0			c			0			
-75.911	36.8433	105		fall	5			1.25		_	1 0	Vone	None	0)		C			0			
-75.903	36.8433	107		fall	4	2		2		-	0	lone	None	0	,		C	1		0			-
-75.894	36.8433	109		fall	6.25	2		1		-	1 0	None	7	0			c		-	0			
-75.922	36.8392	112		fall	7			3.5		_	1 0	lone	Trace	0			c			0			
-75.914	36.8392	114		fall	7.25	7.25		1		_	1 0	lone	Trace	0			С	!		0			
-75.906	36.8392	116		fall	4.5			0.75		-	4 0	lone	None	0			C			0			
-75.897	36.8392	118		fall	4.75	1.75		0.5		-	1 0	lone	Trace	0			0			0			
-75.888	36.8392	120		fall	4.75	2		1		_	0 N	lone	11	0			0			0			
-75.924	36.8358	121		fall	7.5			2		-	0 1	Jone	Trace	0			0			0			
-75.916	36.8358	123		fall	8	8		3			0 1	lone	Trace	0		-	0			0			
-75.908	36.8358	125		fall	4			2		_	0 F	os.	None	0			0			0			
-75.9	36.8358	127		fall	10.75			1.75		-	и 0	Ione	Trace	0			0			0	10110000		
-75.892	36.8358	129		fall	8.25	2.75		0.75			1 N	lone	None	0			0			0			

Table 4. Fall 1996 SPI analysis.

		Virgi	nia B	each S	andmini	ng Proj	ect SPI	visual a	nalysi	s: Fals	Surface	stru	ct.										
							Sed.	Sed.	Relief	-	-Tubes		Subsurf		Infau	1a	Voids						
	***************************************			Date	PEN	RPD	Туре	Rel.	Туре	Epifau	+/->	ellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	96	(cm)	(cm)		(cm)		(+/-)													
-75.92	36.8317	132		fall	4.75	2		2.75		_	8	None	Trace	0			.0			c			
-75.912	36.8317	134		fall	4.5			3			1 0	None	Trace	0			0			C			
-75.903	36.8317	136		fall	6			2		_	0 1	None	Trace	0			0			c	1		
-75.897	36.8317	138		fall	6			2.25		_	1 0	None	Trace	0			0			С	1		
-75.886	36.8317	140		fall	6.5	6		2.25		_	0 1	None	Trace	0			0			0			
-75.923	36.828	141		fall	6.25	6.25		2.25		_	0 1	None	Trace	0			0	-		. 0			
-75.914	36.828	143		fall	6	2.5		1.75		-	1 1	None	Trace.	0			0			0			
-75.907	36.828	145		fall	6.5			2		the:	0 1	None	None	0			0			0			
-75.898	36.828	147		fall	5			3		-	0 1	None	2	0			0			0			
-75.889	36.828	149		fall	15.5			0.75		_	0 1	None	None	1	Worm	4	0			0			
-75.916	36.8237	152		fall	6.5	6.5		2.25			4 0	lone	None	0			0			0			
-75.908	36.8237	154		fall	5	2.5		0.75			0 F	Pos.	None	0			0			0			
-75.9	36.8237	156		fall	4.75			0.25		_	0 N	lone	Trace	0			0			0			
-75.893	36.8237	158	1b	fall	5			1.5		_	0 1	None	7	0			0			0			
-75.883	36.8237	160		fall	5.5			1.5		-	0 N	lone	2	0			0			0			
-75.92	36.8197	161		fall	5.25	3.25		2		-	0 10	lone	1	0			0			0			
-75.913	36.8197	163		fall	6.25	3		2.25		_	1 N	Ione	Trace	. 0			0			0			
-75.904	36.8197	165		fall	4.75	2		1.25		+	0 N	Ione	Trace	0			0			0			
-75.896	36.8197	167		fall	5			2.25		-	0 N	lone	Trace	0			0			0			
-75.887	36.8197	169		fall	17.75			1.75			0 N	Ione	None	0		100	0			0			
-75.914	36.8158	172		fall	5	2.5		0.75			0 P	os.	2	1	Worm	0.25	0			0			

Table 4. Fall 1996 SPI analysis.

		Virgi	nia E	each S	andmini:	ng Proj	ect SPI	visual a	nalysi	s: Fal	Surface	e stru	ct.										
							Sed.	Sed.	Relief		Tube:	s	Subsurf		-Infaur	ıa	Voids						-
				Date	PEN	RPD	Туре	Rel.	Туре	Epifau	+/-	ellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	96	(cm)	(cm)		(cm)		(+/-)	-											-	
-75.907	36.8158	174		fall	5.25	2.5		1.25		-	0	None	Trace		0		0			0			-
-75.898	36.8158	176		fall	6	3.25		0.75		_	0	None	None		0		0			0			
-75.889	36.8158	178		fall	4.25			2		_	0	None	None		0		0			0			
-75.882	36.8158	180		fall	2.75			1.25		_	0	None	Trace	ı	0		0		-	0			
-75.917	36.8117	181		fall	5.5	3.25		1.75		_	0	None	1		0		0			0			
-75.908	36.8117	183		fall	5	2		1		-	0	Pos.	1		0		0			0			
-75.901	36.8117	185		fall	4.5	2.25		2.5			0	Pos.	Trace		0		0			0			
-75.893	36.8117	187		fall	7.5	1.5		2.75		+	0	Pos.	None		0		0			0			
-75.884	36.8117	189		fall	5.25			2			0	Pos.	None		0		0			0			
-75.912	36.808	192		fall	5	:		0.5		-	0	Pos.	None		3 Worm	2.75	0			0			
-75.903	36.808	194		fall	5.25	2		3		_	0	None	Trace	(0		0			0			
-75.895	36.808	196		fall	4.5	2.75		1.75		_	0	Pos.	1		0		0			0			
-75.888	36.808	198		fall	3.5			0.75		_	. 0	Pos.	3		0		0			0			
-75.878	36.808	200		fall	4			1.25		-	0	None	1	(0		0			0			1.
-75.885	36.9083	201		fall	5			2		+	0	None	Trace		0		0			0			-
-75.877	36.9083	203		fall	5.25	1.75		1.75		-	0	None	1	(0		0			0			
-75.868	36.9083	205		fall	4.25	1.5		1.5		-	0	None	None	(0		0			0			
-75.88	36.9053	212		fall	2.5			1.25		+	0	None	Trace	(0	-	0			0			
-75.871	36.9053	214		fall	6.5	1.5		2		-	0	None	None	(0		0			0		<u> </u>	<u> </u>
-75.863	36.9053	216		fall	4.5			0.5			1	None	None		0		0			0			-
-75.854	36.9053	218		fall	3	1.25		1.75			0	Pos.	1	(0			0			

Table 4. Fall 1996 SPI analysis.

		Virgi	nia :	Beach S	andmini	ng Proj	ect SPI	visual a	nalysi	s: Fal	Surfac	e stru	ict.	M. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.									
							Sed.	Sed.	Relief		Tube	g	Subsurf		Infaur	1a	Voids						
				Date	PEN	RPD	Туре	Rel.	Туре	Epifau	+/-	ellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	96	(cm)	(cm)		(cm)		(+/-)													
-75.846	36.9053	220		fall	3.75	1.5		1.75			0	None	4	0			0			0		·	
-75.883	36.902	221		fall	6			1.5		+	0	None	None	0			0			0			
-75.874	36.902	223		fall	5.75			1			0	None	None	0			0			0			
-75.866	36.902	225		fall	5.5			0.75		-	0	None	None	0			0			0			
-75.857	36.902	227		fal1	4.5	1.25		2		_	0	None	None	0			0			0			-
-75.848	36.902	229		fall	3.25	1.5		0.25		_	. 0	None	Trace	0			0			0			
-75.878	36.8983	232	1b	fall	3			1.75		_	0	None	None	0			0			0			
-75.869	36.8983	234		fall	6			1		-	0	None	None	0			0			0			
-75.86	36.8983	236		fall	5	1.5		1.5		_	0	None	None	0			0			0			-
-75.852	36.8983	238		fall	4	1.5		0.25			0	None	Trace	0			0			0			-
-75.843	36.8983	240		fall	3	1.5		1.25		+	0	None	Trace	0			0	-		0			
-75.881	36.8942	241		fall	3.25			0.25		+	0	None	2	0			0			0			ļ
-75.872	36.8942	243		fall	6.5			1		-	0	None	None	0			0			0			
-75.863	36.8942	245		fall	3			1.5		_	0	None	Trace	0			0			0		-	
-75.855	36.8942	247		fall	2.25			0.75		+	0	None	None	0			0			0			<u> </u>
-75.846	36.8942	249		fall	2,75	1		0.5		+	0	None	Trace	1	Worm	0.75	0			0			-
-75.875	36.8908	252		fall	5			1.25		-	0	None	None	0	•		0			0		<u> </u>	
-75.867	36.8908	254		fall	3			0.5		+	0	None	. 2	0			0			0	7-10-		
-75.858	36.8908	256		fall	3			1.5		-	0	None	Trace	0			0			0	10.70/202		
-75.85	36.8908	258		fall	2.5			1		+	0	None	None	0			0			0			
-75.841	36.8908	260		fall	3.5			1		+	0	None	None	0			0			0			

Table 4. Fall 1996 SPI analysis.

		Virgi	nia E	seach Sa	andmini	ng Proj	ect SPI	visual a	nalysi	s: Fal	Surface str	uct.									
					-		Sed.		Relief		Tubes	Subsurf	Infauna	Vo	oids					_	
				Date	PEN	RPD	Туре	Rel.	Туре	Epifau	+/-	Shell	# Type D	epth #		Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	96	(cm)	(cm)		(cm)		(+/-)											
-75.878	36.8867	261		fall	4.5			1.25		_	0 None	None	0		0			0			
-75.869	36.8867	263		fall	6			0.5		_	0 None	None	0		0			0)		
-75.861	36.8867	265		fall	3.75			1.25	_	-	0 None	1	0		0			0			
-75.853	36.8867	267	,	fall	2.75			1.25		-	0 None	Trace	0		0			0			-
-75.844	36.8867	269		fall	3.5			4.5		-	0 None	Trace	0		0			0			
-75.873	36.8825	272		fall	5			1.5		_	0 None	Trace	0		0			0			
-75.864	36.8825	274		fall	5.25	4.5		0.5		-	0 None	None	0		0			0			
-75.855	36.8825	276		fall	6			0.25		-	0 None	Trace	0		0			0			
-75.847	36.8825	278	1b	fall				1.75		+	0 None	None	0		0			0			-
-75.838	36.8825	280		fall	3			1.25		+	0 None	None	0		0			0			
-75.875	36.8783	281		fall	5.5			6.15		_	0 None	None	0		0			0			
-75.867	36.8783	283		fall	4.5	3.75		1.5			0 None	Trace	0		0			0			
-75.858	36.8783	285		fall	4.75	3.75		1.5		-	1 None	None	0		0			0			
-75.85	36.8783	287		fall	6			1.25		+	0 None	Trace	0		0			0			-
-75.841	36.8783	289		fall	7			1.75		-	0 None	Trace	0		0			0			ļ
-75.87	36.8742	292		fall	4.75			1		_	0 None	None	0		. 0			0			<u> </u>
-75.862	36.8742	294		fall	4.75	3.5		1.75		-	0 None	None	0		0			0			+
-75.853	36.8742	296		fall	5	4		1			0 None	Trace	0		0			0			-
-75.844	36.8742	298		fall	5.25			0.5			0 None	Trace	1 Worm	1.25	0			0		-	
-75.836	36.8742	300		fall	3.25		7777	1.5		-	0 None	None	0		0			0	7.00		<u> </u>
-75.896	36.7613	303		fall	5.5			1.5	The tenderal	-	0 None	None	1 Worm	2.5	0			0			<u></u>

Table 4. Fall 1996 SPI analysis.

		Virginia	Beach	San	dminiņ	g Proje	ect SPI	visual	analysi	s: Fal	Surface	stru	ict.										
							Sed.	Sed.	Relief		Tubes	;	Subsurf		Infaur	1a	Voids						
			Dat	e	PEN	RPD	Туре	Rel.	Туре	Epifau	+/->	ellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell rep	96	;	(cm)	(cm)		(cm)		(+/-)													
-75.888	36.7613	305	fal	.1	6.5	6.5		2.75	5	-	1 0	None	Trace	C			()		0			
-75.88	36.7613	307	fa	.1.	7			3	3	_	1 0	None	Trace	C			(0		0			
-75.871	36.7613	309	fa	.1	8.5	8.5		0.25	j.	-	0 1	None	Trace	Q)		0			
-75.898	36.758	312	fal	1	5			1.5	i	-	0 1	Pos.	None	0			(0		0			
-75.891	36.758	314	fal	1	15	3.5		1.25		-	4 1	Pos.	None	2	Worm	11.5	(0			
-75.883	36.758	316	fal	1	7.5			1.25		_	0 1	None	Trace	0				0		0			
-75.874	36.758	318	fal	.1	6.5	6.5		3.5		_	0	None	Trace	0						0			
-75.866	36.758	320	fal	.1	7	7		1.75		-	1 0	None	None	0			()		0		-	
-75.902	36.7533	321	fal	1	5			1.5		_	1 0	None	Trace	0						0			
-75.895	36.7533	323	fal	1	6	3		1.75			1 0	None	None	1	Worm	3.5)		0			
-75.886	36.7533	325	fal	1	6.5	6.5		1.25		_	1 0	None	Trace	0			C)		0			
-75.878	36.7533	327	fal	.1	6.5	6.5		1.5			0	None	None	0			C) .		0			
-75.87	36.7533	329	fal	1	7	7		2.25		-	0 1	None	Trace	. 0			С			0			
-75.896	36.75	332	fal	1	6			1			1 0	None .	Trace	1	Worm	5	С			0	-		
-75.888	36.75	334 1b	fal	1	5.5	5.5		2.5		+	0	None	Trace	0			С			0			
-75.881	36.75	336	fal	1	7.5	7.5		2.75			1 0	None	Trace	0			c)		0			
-75.872	36.75	338	fal	1 6	6.75	6.75		1.25		-	0 1	None	None	0			C			0			
-75.863	36.75	340	fal	1 1	0.25	4		1.75			1 0	None	Trace	0			0)		0			
-75.899	36.7458	341	fal	1	5			1		_	1 0	None	None	0			0)		0			
-75.891	36.7458	343	fal	1	12	3.5		1		-	7 1	Pos.	None	1	Worm	2.5	0			0			
-75.883	36.7458	345	fal	1	8	8		4				None	Trace	0			0			0			

Table 4. Fall 1996 SPI analysis.

		Virginia F	each S	andmini	ng Proj	ect SPI	visual a	analysi	s: Fal	Surfac	e stru	ct.										
						Sed.	Sed.	Relief		Tube	s	Subsurf		Infaur	na	Voids						
			Date	PEN	RPD	Туре	Rel.	Туре	Epifau	+/-	ellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell rep	96	(cm)	(cm)		(cm)		(+/-)													
-75.874	36.7458	347	fall	5.5	5.5		1.5		+	0	None	None	C)		0)		0			
-75.867	36.7458	349	fall	6	4		2	•	+	0	None	Trace	C)		0			0			
-75.893	36.7417	352	fall	6.5	2		0.5		-	1	Pos.	None	C) .		0)		0			
-75.887	36.7417	354	fall	8	8		5		_	0	None	None	C			0			0			
-75.878	36.7417	356	fall	7	7		7.25		_	0	None	None	C			0			0			
-75.87	36.7417	358	fall	5	2.75		1.25		+	0	None	Trace	O)		0			0			
-75.861	36.7417	360	fall	5.5		·	0.75			0	None	1	0			0			0		***************************************	
-75.897	36.738	361	fall	6.25	14		1		_	0	None	None	0)		0			0			
-75.889	36.738	363	fall	6	6		2		-	0	None	None	0)		0			0			
-75.881	36.738	365	fall	3.75	3		0.75		+	0	None	Trace	0)		0			0			
-75.873	36.738	367	fall	4.5	3		1.5		+	0	None	2	1	Worm	3	0			0			
-75.865	36.738	369	fall	9.75			0.5			1	None	Trace	0)		0			0			
-75.892	36.7333	372	fall	10.5	2.75		0.75			0	None	None	0)		0			0			
-75.883	36.7333	374 1.b	fall	6	6		1.5		-	0	None	Trace	0			0			0			
-75.876	36.7333	376	fall	6.5	1		1.75			0	None	Trace	0			0			0			
-75.868	36.7333	378	fall	4.5			2		+	0	Pos.	None	0			0			0			
-75.859	36.7333	380	fall	6.5			2.5		_	0	None	Trace	0			0			0			
-75.894	36.73	381	fall	6.5	2		1.5		+	0	None	Trace	0			0			0			
-75.887	36.73	383	fall	6.75	6.75		0.75		+	0	None	Trace	0			0			0			
-75.879	36.73	385	fall	6.25	6.25		1.5		+	0	None	Trace	0			0			0	- Alvah		
-75.871	36.73	387 1b	fall	4.25			0.75		+	0	None	Trace	0			0			0			

Table 4. Fall 1996 SPI analysis.

		Virgin	nia B	each S	andmini	ng Proje	ect SPI visual	analysi	s: Fal	Surface	e stru	ct.										
							Sed. Sed.	Relief		Tubes	3	Subsurf		Infaur	1a	Voids						
				Date	PEN	RPD	Type Rel.	Туре	Epifau	+/-	ellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	96	(cm)	(cm)	(cm)		(+/-)													
-75.863	36.73	389		fall	5.25		1		-	0	None	Trace	0)		0			0			
-75.893	36.7258	392		fall	5.5	2.5	2.25		+	0	Pos.	None	0)		0			0			
-75.885	36.7258	394	1b	fall	8.5	7.5	2.25		+	0	None	Trace	0)		0			. 0)		
-75.877	36.7258	396		fall	4.75		1.75		_	0	None	Trace	0			0			0	1		
-75.865	36.7258	398		fall	14		0.75		-	6	None	None	1	Worm	. 8	0			0			
-75.857	36.7258	400		fall	5.5		2		_	0	None	Trace	0	,		0			0			

Table 5. Spring 1997 SPI analysis.

		Virgin:	ia Be	ach	Sand	mining	Project	SPI vi	sual an	alysis: §	Spring, 19	Surfac	e struc	t.		Ţ							*****	-
								Sed.	Sed.	Relief		Tube		Subsuri		Infauna		Void	ls					
					Date	PEN	RPD	Туре	Rel.	Type	Epifauna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	,	97	(cm)	(cm)		(cm)		(+/-)													
-75.9511	36.9166	97VB00	1 :	l b	spr	8.0	2.1	sı	1	PIT, SHELL	NONE	NONE	NONE	NONE	0			0			0		- 0	
-75.9501	36.9151	97VB00	L 2	2 b	spr	21.3	1.5	SI-CL	1.3	PIT, MOUND	NONE	2	NONE	15	0			0			0		3	AN
-75.9248	36.9196	97VB00	2 :	l b	spr	12	3	SI	0.5	SHELL	NONE	5	NONE	10	0			0			. 0		5	AN
-75.9248	36.9196	97VB00	2 2	2 b	spr	14.2	6	SI-CL	1.2	PIT, MOUND	NONE	1	NONE	10	1	WORM	10.3	0			0		0	
-75.8996	36.9227	97VB00	3 :	l b	spr	4.3	4.3	FS	1	BEDFORM, S.	NONE	1	NONE	5	0			0			0		0	
-75.8996	36.9283	97VB00	3 2	2 a	spr			FS	1.8	BEDFORM, S	NONE	NONE	NONE	TRACE	0		_	0			0		0	
-75.8742	36.9256	97VB00	4 :	l b	spr	3.3	3.3	FS	1.7	BEDFORM, S	NONE	NONE	NONE	NONE	0			0			0	-	0	
-75.8742	36.9256	97VB00	1 2	2 b	spr	4.5	2.5	FS	2.1	SHELL	7 SAND DO	NONE	NONE	5	0			0	-		0		0	
-75.8488	36.9284	97VB00!	5 3	b	spr	8.3		FS	1.9	BEDFORM, S	2 SAND DO	NONE	NONE	TRACE	0			0			0		0	
-75.8488	36.9284	97VB00	5 2	2 b	spr	7.1	2.2	FS	1.4	BEDFORM	3 SAND DO	NONE	NONE	TRACE	0			0			0		0	
-75.8574	36.9160	97VB00) :	L b	spr	6.4	0.3	FS	3.4	PIT, SHELL	CRUSTACE	NONE	NONE	5	0			0			0		0	
-75.8574	36.9160	97VB009	9 2	2 b	spr	4.7	0.7	FS	1.7	BEDFORM, SI	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8828	36.9131	97VB008	3 :	L b	spr	4.2	3	FS	2.3	SHELL, PIT	NONE	NONE	NONE	5	0	:		0			0		0	<u> </u>
-75.8828	36,9131	97VB00	3 2	2 b	spr	6.8	2	FS	2	SHELL, PIT	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.9081	36.9101	97VB00	7 :	b	spr																			
-75.9081	36.9101	97VB00	7 2	2 a	spr		-	CL		ROCKY	HERMIT CE	NONE	NONE	50	0			0			0		0	
-75.9332	36.9071	97VB006	5 1	b	spr	>24		SI	IND	IND	IND	IND	IND	5	3	WORMS	IND	0			0		1	AN
-75.9332	36.9071	97VB006	5 2	b	spr	18.6	2.8	SI	1.3	MOUND	NONE	NONE	NONE	TRACE	0			0			. 0		0	
-75.9423	36.8946	97VB01	L 1	b	spr	19.4	2.9	FS-SI	1.5	BEDFORM	NONE	NONE	NONE	NONE	0			0			0		0	
-75.9423	36.8946	97VB01	L 2	d	spr	20.4	4.2	SI	1	SHELL	NONE	NONE	NONE	NONE	0		-	0			0		0	
-75.9168	36.8976	97VB012	2 1	b	spr	8.3	8.3	cs	2.5	BEDFORM	NONE	NONE	NONE	5	0			0			0		0	

Table 5. Spring 1997 SPI analysis.

		Virginia	Bea	ch	Sandı	mining	Project SPI vi	sual an	alysis: :	Spring, 19	Surfac	e stru	ct.										
	,						Sed.	Sed.	Relief		Tube	s	Subsuri		Infauna-		Voi	ds					
					Date	PEN	RPD Type	Rel.	Туре	Epifauna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
ON	LAT	cell	rep		97	(cm)	(cm)	(cm)		(+/-)													
-75.9168	36.8976	97VB012	2	b	spr	11.5	11.5 CS	1.2	BEDFORM	NONE	NONE	NONE	5	0			0			0		0	
-75.8913	36.9007	97VB013	1	b	spr	4.8	3 FS	0.3	EVEN	NONE	NONE	NONE	NONE	0	,		0			0		0	
-75.8913	36.9007	97VB013	2]	b	spr	5.2	1.7 FS	0.7	SHELL	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8656	36.9035	97VB014	1	b	spr	5.2	2.6 FS	2	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8661	36.9044	97VB014	2 1	b	spr	4.4	3.2 FS	1.3	BEDFORM,S	INONE	NONE	NONE	5	0			0			0		_ 0	
-75.8405	36.9064	97VB015	1	b	spr	4.8	3 FS	1.4	BEDFORM, S	SAND DOL	NONE	NONE	TRACE	0			0			0		0	
-75.8405	36.9064	97VB015	2]	b	spr	5.2	1.7 FS	1.5	BEDFORM,S	ISAND DOLI	NONE	NONE	TRACE	0			0			0		0	
-75.8492	36.9111	97VB019	1	b	spr	5.1	2.7 FS	1.6	BEDFORM,S	INONE	NONE	NONE	TRACE	0			0			0		0	
-75.8492	36.9111	97VB019	2 1	b	spr	5.1	4 FS	1	BEDFORM	NONE	NONE	NONE	TRACE	0			0			. 0		0	
-75.8743	36.8910	97VB018	1	b	spr	5.6	4.4 FS	1.7	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8743	36.8910	97VB018	2	b	spr	4.3	4.3 FS	1.9	BEDFORM, S	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8998	36.8881	97VB017	1.	b	spr	8.3	3.2 CS	0.7	SHELL	NONE	NONE	NONE	5	0			0			0		0	
-75.8998	36.8881	97VB017	2 1	b	spr	8.3	3.9 CS	0.3	BEDFORM, S	INONE	NONE	NONE	5	0			0			0		0	
-75.9253	36.8852	97VB016	1	b	spr	23.5	4.2 FS-SI	1.8	PIT, MOUND	NONE	NONE	NONE	TRACE	1	WORM	8.2	1	AN	17.5	0		2	ox
-75.9253	36.8852	97VB016	2 3	b	spr	10.2	7 CS	0.3	BEDFORM, S	NONE	1	NONE	5	0			0			0		0	
-75.9336	36.8726	97VB021	1	b	spr	10.5	6.2 FS-SI	1,5	BEDFORM	NONE	NONE	NONE	NONE	1	CRUSTACI	6.3	0			0		1	AN
-75.9336	36.8726	97VB021	2 3	b	spr	12	6 FS	1.5	BEDFORM	NONE	2	NONE	TRACE	0			0			0		2	ох
-75.9083	36.8757	97VB022	1 1	b	spr	4.8	4.8 MS	1.4	MOUND	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.9083	36.8757	97VB022	2 3	b	spr	9.1	6 MS	0.7	BEDFORM, S	NONE	NONE	NONE	TRACE	1	WORM	2.3	0			0		0	
-75.8827	36.8789	97VB023	1 3	0	spr	6.5	1.8 CS	0.7	ROCK, SHEL	NONE	NONE	NONE	5	0			0			0		0	:
-75.8576	36.8814	97VB024	1 1	o	spr	1.8	1.8 FS	1.1	BEDFORM	NONE	NONE	NONE	NONE	0			0			0		0;	

Table 5. Spring 1997 SPI analysis.

		Virginia	Bea	ach	Sandı	nining	Project	t SPI vi	sual an	alysis: 8	Spring, 19	Surfa	e struc	t.										
								Sed.	Sed.	Relief		Tub		Subsuri		Infauna	L	Void	ls					
		,			Date	PEN	RPD	Туре	Rel.	Type	Epifauna	+/	- Pellets	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Type
LON	LAT	cell	rep		97	(cm)	(cm)		(cm)		(+/-)													
-75.8576	36.8814	97VB024	2	b	spr	5.5	3.7	FS	1.5	BEDFORM	NONE	NONE	NONE	NONE	. 0			0			0		0	
-75.8324	36.8845	97VB025	1	b	spr	4.9	4.9	FS	0.4	SHELL, BED	INONE	NONE	NONE	NONE	0	1		0			0		0	
-75.8324	36.8845	97VB025	2	b	spr	6.1		FS	3	BEDFORM,S	NONE	NONE	NONE	NONE	0	1		0			0		0	1
-75.8411	36.8717	97VB029	1	b	spr	5.3	3.7	FS	1.5	BEDFORM, S	NONE	NONE	NONE	NONE	0			0			0		0	<u> </u>
-75.8411	36.8717	97VB029	2	b	spr	5.3	5.3	FS	1.9	BEDFORM, S	NONE	NONE	NONE	NONE	0			0			0		0	
-75.8659	36.8687	97VB028	1	b	spr	4.9	2.2	sı	0.7	SHELL, MOU	NONE	NONE	NONE	TRACE	. 0		_	0			. 0		0	
-75.8659	36.8687	97VB028	2	b	spr	5.8	3	sī	0.6	SHELL	NONE	:	2 NONE	5	0			0			0		0	
-75.8910	36.8659	97VB027	1	b	spr	10	10	MS	0.9	SHELL	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8919	36.8661	97VB027	2	b	spr	6.4	6.4	MS	0.6	EVEN	NONE	NONE	NONE	TRACE	0			0		-	0		0	
-75.9171	36.8628	97VB026	1	b	spr	7.8	4.2	MS	0.9	BEDFORM	NONE	NONE	NONE	5	0			0			0		0	<u> </u>
-75.9171	36.8628	97VB026	2	b	spr	13.9	6.3	MS-CL	1.1	BEDFORM	NONE	NONE	NONE	5	0	-		0			0		0	
-75.9257	36.8507	97VB031	1	b	spr	7.9	6	MS	2	BEDFORM	NONE	NONE	NONE	10	0			o			0		0	
-75.9257	36.8511	97VB031	2	b	spr	8.5	8.5	MS	0.7	EVEN	NONE		1 NONE	TRACE	0			0			0		0	
-75.9004	36.8533	97VB032	1	b	spr	5.9	5.5	CS-FS	0.3	EVEN	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.9004	36.8533	97VB032	2	b	spr	6.7	6.7	MS	0.6	BEDFORM	NONE	:	NONE	TRACE	0			0			0		0	
-75.8752	36.8562	97VB033	1	b	spr	17.5	6.8	SI	1	PLANT DET	NONE		1 NONE	. 5	0			0			0		0	
-75.8752	36.8562	97VB033	2	b	spr	7.5	5.9	FS-SI	1.2	PLANT DET	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8495	36.8574	97VB034	1	b	spr	6	5.5	FS	2.3	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8495	36.8574	97VB034	2	b	spr	6	4.8	FS	1.2	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8250	36.8621	97VB035	1	b	spr	7.7	6.7	MS	0.7	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8250	36.8621	97 V B035	2	b	spr	6.3	- 6.3	MS	0.7	BEDFORM, S	NONE	NONE	NONE	NONE	0			0			0		0	

Table 5. Spring 1997 SPI analysis.

		Virginia	Beach	Sandı	mining	Project SPI	visual ar	alysis:	Spring, 19	Surfa	ce struc	t.										
						Sed	. Sed.	Relief		Tube	es	Subsuri	3	Infauna		Voids	ı					
				Date	PEN	RPD Typ	Rel.	Туре	Epifauna	+/	- Pellets	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
ON	LAT	cell	rep	97	(cm)	(cm)	(cm)		(+/-)													
75.8333	36.8489	97VB039	1 b	spr	5.3	5.3 FS	1.3	BEDFORM, S	NONE	NONE	NONE	TRACE	0			0			0		0	
75.8333	36.8489	97VB039	2 b	spr	7	7 MS	1.4	BEDFORM, S	NONE	NONE	NONE	10	0			0			0		0	
75.8587	36.8468	97VB038	1 b	spr	6.1	FS	2	BEDFORM, S	NONE	NONE	NONE	5	0			0			0		0	
75.8587	36.8468	97VB038	2 b	spr	5.7	FS	0.9	BEDFORM, S	INONE	NONE	NONE	TRACE	0			0			0		1	AN
75.8837	36.8439	97VB037	1 b	spr	5.5	5 FS	1.4	BEDFORM, P	NONE		1 NONE	TRACE	0			0			0		0	-
75.8837	36.8439	97VB037	2 b	spr	6	3.5 FS	0.8	BEDFORM, S	INONE	NONE	NONE	TRACE	0			0			0		0	
75.9091	36.8409	97VB036	1 b	spr	9.7	MS	1.8	SLOPE	NONE	NONE	NONE	TRACE	0			0			0		0	
75.9088	36.8402	97VB036	2 b	spr	6.2	6.2 MS-FS	0.4	SHELL	NONE	NONE	NONE	TRACE	0			0			0		0	
75.9174	36.8287	97VB041	1 b	spr	6	0.7 FS	2.1	SHELL, BED	NONE	NONE	NONE	TRACE	0			0			0		0	
75.9174	36.8287	97VB041	2 b	spr	6.3	6.3 FS	1.8	SHELL, BED	INONE	NONE	NONE	TRACE	0			0		-	0		0	
75.8926	36.8312	97VB042	1 b	spr	7.3	3.8 FS	1.3	BEDFORM, S	INONE	NONE	NONE	5	0			0			0		0	
75.8926	36.8312	97VB042	2 b	spr	6.4	2 FS-SI	2	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		0	
75.8672	36.8342	97VB043	1 b	spr	6.1	4.2 FS	2.4	SHELL, BED	NONE	NONE	NONE	TRACE	0			0			0		0	
75.8672	36.8342	97VB043	2 b	spr	5.9	2.7 FS	2.2	SHELL, BED	NONE	NONE	NONE	NONE	0	****		0			0		0	
75.8425	36.8373	97VB044	1 b	spr	8.9	8.9 MS	2.1	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		0	
75.8420	36.8367	97VB044	2 b	spr	6.9	6.9 MS-FS	1.3	SHELL, BED	HERMIT CE	NONE	NONE	5	0			0			0		0	
75.8175	36.8400	97VB045	1 b	spr	7.5	7.5 MS	0.6	BEDFORM	NONE	NONE	NONE	NONE	0			0			0		0	
75.8176	36.8401	97VB045	2 b	spr	6.2	6.2 MS	0.9	SHELL, BED	NONE	NONE	NONE	NONE	0			0			0		0	
75.8504	36.8247	97VB048	1 b	spr	5.7	5.7 MS	3.7	SHELL, BED	SAND DOLI	NONE	NONE	TRACE	0			0			0		0	
75.8761	36.8219	97VB047	1 b	spr	5.4	5.4 FS	1.6	SHELL, BED	INONE	NONE	NONE	TRACE	0			0			0		0	
75.8761	36.8220	97VB047	2 a	spr		5.7 FS	1.9	DISTURBED	NONE	NONE	NONE	NONE	0			0			0		0	ı

Table 5. Spring 1997 SPI analysis.

		Virginia	Beach	Sandı	mining	Project	SPI vi	sual ar	alysis: {	Spring, 1	Surfac	e struc	ıt.										
							Sed.	Sed.	Relief		Tube	s	Subsur	:	Infauna-		Void	ls					
				Date	PEN	RPD	Туре	Rel.	Туре	Epifauna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell_	rep	97	(cm)	(cm)		(cm)		(+/-)													
-75.9014	36.8190	97VB046	1 b	spr	15.5	15.5	CL	0.7	MOUND	NONE	3	NONE	NONE	0			6	1 OX,5	AN	0		1	AN
-75.9013	36.8191	97VB046	2 b	spr	5.7	1.4	CL-SI	1.9	SHELL, BED	NONE	NONE	NONE	NONE	0			0			0		0	
-75.9102	36.8065	97VB051	1 b	spr	5.8	4	FS	1.4	SHELL, BED	NONE	NONE	NONE	NONE	0			0			0		. 0	
-75.9102	36.8065	97VB051	2 b	spr	6.2	4.8	FS	1	BEDFORM	NONE	NONE	NONE	TRACE	0			0	· ·		0		0	
-75.8843	36.8093	97VB052	1 b	spr	7.3	6	FS	1.6	BEDFORM	NONE	NONE	NONE	NONE	0			0	`		0		0	
-75.8844	36.8093	97VB052	2 b	spr	5.9	5.9	FS	1.9	BEDFORM	NONE	NONE	NONE	NONE	0			О			0		0	
-75.8596	36.8123	97VB053	1 b	spr	4.8	4.8	FS	1.6	SHELL, BED	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8596	36.8124	97VB053	2 b	spr	5.3	5.3	FS	1.8	MOUND	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8596	36.8153	97VB054	1 b	spr	5.3	4	FS	1.1	BEDFORM	NONE	NONE	NONE	NONE	0			0			0		0	
-75.8340	36.8154	97VB054	2 b	spr	5.8	5.8	FS	0.5	SHELL	NONE	NONE	NONE	NONE	0			0			0		0	
-75.8428	36.8034	97VB058	1 b	spr	8	8	sī	2.7	SHELL, ROC	NONE	NONE	NONE	50	0			0			0	-	1	AN
-75.8428	36.8035	97VB058	2 b	spr	7.2	7.2	MS	1.2	SHELL, MOU	NONE	2	NONE	25	0		-	0			0	٠.	0	
-75.8681	36.7997	97VB057	1 b	spr	6.4	6.4	sı	0.3	SHELL, BED	NONE	NONE	NONE	5	0			0		-	0		0	
-75.8680	36.7997	97VB057	2 b	spr	5	5	sı	1.8	SHELL, BED	NONE	NONE	NONE	5	0			0			0		0	
-75.8926	36.7970	97VB056	1 b	spr	8.5	8.5	FS	2.7	MOUND, BED	NONE	NONE	NONE	NONE	0			0			0		0	
-75.8926	36.7970	97VB056	2 b	spr	6.8	6.8	FS	1.5	BEDFORM	NONE	NONE	NONE	NONE	0			0			0		0	<u> </u>
-75.9018	36.7848	97VB061	1 b	spr	5	2	FS	2	SHELL, BED	NONE	NONE	NONE	NONE	0		-	0			-0		0	
-75.9018	36.7846	97VB061	2 b	spr	7.8	.7.8	FS	1.5	BEDFORM	NONE	NONE	NONE	TRACE	0		-	0			0		0	
-75.8765	36.7875	97VB062	1 b	spr	8	8	FS	3.4	SLOPE	NONE	NONE	NONE	20	0			0			0		0	
-75.8765	36.7876	97VB062	2 b	spr	11	4.6	FS	0.9	BEDFORM	NONE	NONE	NONE	20	0			0			0		0	
~75.8514	36.7905	97VB063	1 b	spr	4.9	4.9	cs	3.2	SHELL, SLO	NONE	NONE	NONE	50	0			0			0		0	

Table 5. Spring 1997 SPI analysis.

		Virginia	Beac	h San	imining	Project	t SPI vi	sual ar	alysis: S	Spring, 1	Surfac	e struc	t.										
							Sed.	Sed.	Relief		Tube	s	Subsur		Infauna		Void	ls					
				Date	PEN	RPD	Туре	Rel.	Туре	Epifauna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	97	(cm)	(cm)		(cm)		(+/-)													
-75.8514	36.7905	97VB063	2 h	spr	5.3	5.3	cs	2.1	SHELL, ROC	NONE	NONE	NONE	50	c			0			0		0	
-75.8262	36.7927	97VB064	1 1	spr	6.2	4	SI	1.5	ROCK, SHEL	NONE	1	NONE	5	C			0			0		0	
-75.8347	36.7807	97VB068	1 k	spr	4.2	4.2	cs	3.3	MOUND	NONE	11	NONE	TRACE	C			0			0		0	
~75.8345	36.7809	97VB068	2 8	spr			cs	1.6	SHELL, SLO	NONE	NONE	NONE	5	0			0			0		0	
-75.8934	36.7628	97VB071	1 h	spr	12.5	12.5	FS	1.2	BEDFORM	NONE	10	NONE	NONE	C			0			0		4	1 OX,3
-75.8935	36.7624	97VB071	2 1	spr	9.9	7	FS	0.8	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		. 0	
-75.8855	36.7748	97VB066	1 k	spr	7.8	7.8	FS	1.1	SHELL	NONE	NONE	NONE	5	0			0			0		0	
-75.8855	36.7750	97VB066	2 k	spr	2.5	2.5	FS	4.5	MOUND, SHE	NONE	NONE	NONE	5	0			0			0		0	
-75.8686	36.7649	97VB072	1 k	spr	5.5	5.5	FS	1.4	SHELL, MOU	NONE	NONE	NONE	5	0			0			0		0	
-75.8686	36.7650	97VB072	2 h	spr	6.5	6.5	FS	1.5	SHELL, BED	NONE	NONE	NONE	5	0			0			0		0	
-75.8431	36.7685	97VB073	1 h	spr	6.4	6.4	FS	1.3	SHELL	NONE	NONE	NONE	50	0			0			0		0	
-75.8431	36.7687	97VB073	2 a	spr		8.8	FS	1.3	SHELL	NONE	NONE	NONE	50	0			0			0		0	
-75.8431	36.7688	97VB073	3 b	spr	4	4	FS	4.8	SHELL	NONE	NONE	NONE	25	0		ļ	0			0		0	
-75.8431	36.7685	97VB074	1 k	spr	8.8	8.8	sı	0.8	ROCK, SHEL	NONE	NONE	NONE	30	0		-	0		-	0		Ô	
-75.8174	36.7709	97VB074	2 k	spr	8	8	sı	0.7	ROCK, SHELI	NONE	NONE	NONE	10	0			0	-	-	0		0	
-75.9297	36.8778	96VB013	1 k	spr	22	10	FS-SI	2.9	MOUND, PIT	NONE	NONE	NONE	NONE	0			1	AN	11.3	0	-	0	
-75.9304	36.8778	96VB013	2 b	spr	23.1	16.2	FS-SI	1.8	MOUND	IND	IND	IND	IND	5	WORMS	12,16	0			0		2	I 0X,1
-75.9233	36.8739	96VB024	1 h	spr	16	4.3	FS-SI	1.4	BEDFORM	NONE	3	NONE	NONE	1	WORM	17	0			0		0	ļ
-75.9232	36.8736	96VB024	2 k	spr	7.7	7.7	FS-CL	4	MOUND	NONE	NONE	NONE	NONE	1	WORM	8.7	0			0		0	
-75.9015	36.8667	96VB049	1 b	spr	8.7	8.7	FS	1.3	SHELL, BEDI	NONE	NONE	NONE	TRACE	0			0			0		0	<u> </u>
-75.9015	36.8667	96VB049	2 b	spr	8	. 8	FS	0.5	BEDFORM	NONE	NONE	NONE	NONE	. 0			0			0		0	

Table 5. Spring 1997 SPI analysis.

		Virginia	Bea	ach	Sandı	mining	Projec	t SPI vi	sual an	alysis: S	pring, 19	Surfac	e struc	t.										
								Sed.	Sed.	Relief		Tube	s	Subsuri		Infauna		Void	s					
		,			Date	PEN	RPD	Туре	Rel.	Туре	Epifauna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep		97	(cm)	(cm)	The second reserve to the second	(cm)		(+/-)													
-75.9117	36.8584	96VB066	1	b	spr	13.5	13.5	FS-SI	1.1	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.9118	36.8598	96VB066	2	b	spr	13	3.7	FS-SI	1.3	BEDFORM	NONE	. 6	NONE	TRACE	0			0			0		0	
-75.9150	36.8433	96VB104	1	b	spr	11.8	6	FS-SI	1.4	BEDFORM	NONE	7	FEW	NONE	. 0			0			0		0	
-75.9151	36.8432	96VB104	2	b	spr	14.9	7.2	FS-SI	2	MOUND, PIT	NONE	13	NONE	NONE	0			0			0		0	
-75.9071	36.8432	96VB106	1	b	spr	8.5	8.5	FS	1.1	SHELL	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.9071	36.8431	96VB106	2	b	spr	7.8	2.4	FS-SI	1.4	SHELL, DIS	NONE	2	NONE	TRACE	0			0			0		0	
-75.9083	36.8390	96VB115	1	b	spr	5.5	5.5	FS	2.6	SHELL, BED	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.9083	36.8391	96VB115	2	b	spr	9.3	9.3	FS	0.7	BEDFORM	NONE	NONE	FEW	NONE	. 0			0			0		0	
-75.9000	36.8316	96VB137	1	b	spr	7.5	7.5	FS	1.7	ROCK, SHELI	NONE	NONE	NONE	25	0			0			0		0	
-75.9000	36.8316	96VB137	2	b	spr	5.5	5.5	FS	3	ROCK, SHEL	NONE	NONE	NONE	25	0			0			0		0	
-75.9140	36.8149	96VB174	1	b	spr	5.7	5.7	FS	2.1	SHELL, BEDI	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.9140	36.8155	96VB174	2	b	spr	6.5	6.5	FS	1	SHELL, BEDI	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.9009	36.8117	96VB185	1	b	spr	6.3	6.3	FS	1.9	SHELL, BEDI	NONE	NONE	NONE	TRACE	0			0			0		1	ox
-75.9008	36.8117	96VB185	2	b	spr	4.8	4.8	FS	3.5	BEDFORM	NONE	NONE	NONE	5	0			0			- 0		0	
-75.9035	36.8079	96VB194	1	b	spr	5.3	5.3	FS	3.3	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.9034	36.8079	96VB194	2	b	spr	6.7	6.7	FS	1	SHELL, BEDI	NONE	NONE	NONE	NONE	0			0			0		0	
-75.8820	36.7579	96VB316	1	b	spr	6	6	MS	1.5	PIT, MOUND	NONE	NONE	NONE	5	0			0			0		0	
-75.8819	36.7580	96VB316	2	b	spr	11.5	11.5	MS	3.7	SHELL, BEDI	NONE	2	NONE	TRACE	0			0			0		0	
-75.8957	36.7500	96VB332	1	b	spr	8.8	6.8	FS	2.3	MOUND, PIT	NONE	NONE	NONE	NONE	0			0			0		0	
-75.8953	36.7499	96VB332	2	b	spr	12.8	4.6	FS	2	BEDFORM	NONE	NONE	NONE	NONE	2	WORM	3.4,1	0			O ⁽		1	ох
-75.8742	36.7459	96VB347	1	b	spr	9.5	9.5	FS	3.1	SHELL, BEDI	NONE	NONE	NONE	TRACE	0			0			0		0	ı

Table 5. Spring 1997 SPI analysis.

		Virginia	Beacl	n Sand	mining	Project S	PI visual an	alysis: S	Spring, 19	Surfac	e struc	t.										
						s	Sed. Sed.	Relief		Tube	s	Subsuri		Infauna		Void	ls					
				Date	PEN	RPD I	Type Rel.	Туре	Epifauna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	97	(cm)	(cm)	(cm)		(+/-)													The state of the s
-75.8740	36.7460	96VB347	2 b	spr	8.2	8.2 FS	1.1	BEDFORM	NONE	NONE	NONE	NONE	- 0			0			0		0	
-75.8899	36.7416	96VB353	1 b	spr	10.5	10.5 MS	0.5	ROCK, SHEL	NONE	1	NONE	50	0			0			0		0	
-75.8897	36.7416	96VB353	2 b	spr	7.5	7.5 MS	1.2	ROCK, SHEL	NONE	NONE	NONE	50	0			0			0		0	
-75.8806	36.7381	96VB365	1 b	spr	7.2	7.2 FS	1.8	SHELL, MOU	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8806	36.7381	96VB365	2 b	spr	8	8 FS	0.8	SHELL, BED	NONE	NONE	NONE	5	0			0		-	0		.0	
-75.8715	36.7334	97VB377	1 b	spr	8.5	8.5 FS	1.3	BEDFORM.D	NONE	NONE	NONE	NONE	0			0			0		0	
-75.8713	36.7335	96VB377	2 b	spr	4.7	3.9 FS	0.7	BEDFORM	NONE	NONE	NONE	NONE	0			0			0		- 0	
-75.8684	36.7303	97 V B086	1 b	spr																		
-75.8683	36.7303	97VB086	2 b	spr	7.5	3.5 FS-	-SI 2.4	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		-0	
-75.8438	36.7334	97VB087	1 b	spr	9.1	9.1 MS	2	SHELL, BED	NONE	NONE	NONE	25	0			0			0		. 0	
-75.8420	36.7335	97VB087	2 b	spr	5	5 FS	2.5	BEDFORM, S	NONE	NONE	NONE	TRACE	0			0			0		. 0	
-75.8185	36.7375	97VB088	1 b	spr	5.9	5.9 MS	1.9	BEDFORM, S	NONE	NONE	NONE	5	0			0			0		0	
-75.8185	36.7375	97VB088	2 b	spr	10.7	10.7 MS	2	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8093	36.7490	97VB084	1 b	spr	6	6 CS	4	SHELL, SLO	NONE	NONE	NONE	25	. 0			0			0		0	
-75.8098	36.7491	97VB084	2 b	spr	8.5	8.5 FS	1.9	SHELL	NONE	NONE	NONE	30	0			0			0		0	
-75.8348	36.7459	97VB083	1 b	spr	6.7	6.7 FS	1.2	SHELL, BED	NONE	NONE	NONE	15	0			0			0		0	
-75.8348	36.7459	97VB083	2 b	spr	4.8	4.8 FS	1.3	BEDFORM, SI	NONE	NONE	NONE	TRACE	0			0			0		0	-
-75.8603	36.7431	97VB082	1 b	spr	7	1.3 FS-	-SI 0.6	BEDFORM, SI	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.8636	36.7478	97VB082	2 b	spr	6.8	6.8 FS	1.5	BEDFORM, SI	NONE	NONE	FEW	NONE	0			0			0		0	-
-75.8768	36.7525	97VB076	1 b	spr	10	10 MS	2.5	SHELL, BEDI	NONE	NONE	NONE	TRACE	0			0	_		0		. 0	
-75.8768	36.7525	97VB076	2 b	spr	7.1	7.1FS	1.3	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0	.	. 0	

Table 5. Spring 1997 SPI analysis.

		Virginia	Beac	h Sand	mining	Project	t SPI vi	sual an	alysis:	Spring, 1	Surface	e struc	t.										
							Sed.	Sed.	Relief		Tube:	s	Subsuri		·Infauna·		Void	s				-	
				Date	PEN	RPD	Type	Rel.	Туре	Epifauna	+/-	Pellets	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
LON	LAT	cell	rep	97	(cm)	(cm)		(cm)		(+/-)													
-75.8516	36.7552	97VB077	1 b	spr	4.8	4.8	MS	1.7	SLOPE	NONE	NONE	NONE	5	()		0			0		. 0	
-75.8516	36.7552	97VB077	2 b	spr	7.3	7.3	MS	0.8	BEDFORM, S	INONE	NONE	NONE	5	(0			0		0	
-75.8263	36.7585	97VB078	1 b	spr	5.5	5.5	MS .	1.3	SHELL, BED	INONE	NONE	NONE	TRACE	. ()		0			0		0	
-75.8262	36.7587	97VB078	2 b	spr	7	7	MS	0.8	BEDFORM, S	NONE	NONE	NONE	TRACE	(0			0		0	
-75.8018	36.7269	97VB094	1 b	spr	8.3	8.3	MS	1.7	BEDFORM	NONE	NONE	NONE	TRACE	. (0			0		. 0	
-75.8018	36.7271	97VB094	2 b	spr	6.5	6.5	MS	2.1	BEDFORM	NONE	NONE	NONE	TRACE	()		0			Ó		0	
-75.8270	36.7239	97VB093	1 b	spr	6	4.7	sī	0.7	SHELL, BED	INONE	NONE	NONE	5	()		0			0		0	
-75.8270	36.7241	97VB093	2 b	spr	8.1	2.3	si	0.8	SHELL	NONE	NONE	NONE	10	C			0			0		0	-
-75.8523	36.7213	97VB092	1 b	spr	9	9	FS	2.8	MOUND, SHE	INONE	NONE	NONE	5	1	CRUSTAC	0.7	0			0		1	AN
-75.8523	36.7214	97VB092	2 b	spr	5.8	5.8	FS	4.5	SHELL, BED	INONE	NONE	NONE	TRACE	()		0			0		0	
-75.8777	36.7181	97VB091	1 b	spr	7	7	FS	2	SHELL, BED	NONE	NONE	NONE	10)		0			0		. 0	
-75.8776	36.7182	97VB091	2 b	spr	5.3	5.3	FS	3.5	BEDFORM	NONE	NONE	NONE	TRACE	C)		0			0		0	
-75.8586	36.7085	97VB096	1 b	spr	3.3	3.3	sı	2.3	SHELL, SLO	INONE	NONE	NONE	TRACE)		0			0		1	AN
-75.8610	36.7086	97VB096	2 b	spr	8.1	8.1	FS	2.3	SLOPE	NONE	4	NONE	5)		1 0	OX	7.5	0		. 0	
-75.8356	36.7114	97VB097	1 b	spr	3.3	3.3	FS	3	SHELL, BED	NONE	NONE	NONE	TRACE	C)		0			0		0	
-75.8356	36.7116	97VB097	2 b	spr	5.2	4.7	FS	2.3	SHELL, BED	INONE	NONE	NONE	TRACE	C			0			0		0	
-75.8104	36.7144	97VB098	1 b	spr	11.8	11.8	MS	5	BEDFORM	NONE	6	NONE	TRACE	C			0			. 0		0	
-75.8114	36.7149	97VB098	2 b	spr	5.8	5.8	MS	1.3	BEDFORM	NONE	1	NONE	TRACE	C			0			0		0	
-75.7936	36.7048	97VB104	1 b	spr	10.3	10.3	MS	2	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		0	
-75.7936	36.7050	97VB104	2 b	spr	5.5	5.5	MS	1.8	SHELL, BED	NONE	2	NONE	TRACE	0			0			0		0	
-75.8189	36.7020	97VB103	1 b	spr	8.5	8.5	FS	2.2	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		0	

Table 5. Spring 1997 SPI analysis.

		Virginia	Beac	h San	dmining	Project	SPI vi	sual an	alysis: S	Spring, 19	Surfac	e struc	t.										
							Sed.	Sed.	Relief		Tube	s	Subsuri		Infauna		Voida	s					
				Dat	e PEN	RPD	Туре	Rel.	Type	Epifauna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
ON	LAT	cell	rep	9	7 (cm)	(cm)		(cm)		(+/-)													
-75.8189	36.7021	97VB103	2 b	spr	5.4	5.4	FS	2	SHELL, BED	NONE	1	NONE	TRACE	0			0			0		0	
75.8440	36.6989	97VB102	1 b	spr	4	4	MS	2.4	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		. 0	
75.8440	36.6992	97VB102	2 b	spr	5	5	MS	0.5	SHELL, BED	NONE	NONE	NONE	TRACE	0			0			0		0	
75.8694	36.6958	97VB101	1 b	spr	9.5	9.5	FS	2.7	SHELL, BED	NONE	1	NONE	5	0			0		٠	0		0	
75.8694	36.6960	97VB101	2 b	spr	9.3	9.3	FS	3.7	SHELL, BED	NONE	NONE	NONE	5	0			0		-	0		0	
75.8527	36.6861	97VB106	1 b	spr	6.7	6.7	SI	1.2	SHELL	NONE	1	NONE	10	0			0			0		1	AN
75.8527	36.6862	97VB106	2 b	spr	6.1	3	SI	1.5	SHELL	NONE	NONE	NONE	TRACE	0			0	-		0		0	
75.8274	36.6889	97VB107	1 b	spr	1.0	3.2	FS-SI	1.5	SHELL, MOU	HERMIT C	1	NONE	NONE	1	WORM	9	0			0		4	OX
75.8273	36.6894	97VB107	2 b	spr	14.5	6.4	FS-SI	1.1	MOUND, SHE	NONE	5	NONE	NONE	1	WORM	5.6	0			0		. 0	
75.8023	36.6917	97VB108	1 b	spr	5.2	5.2	FS	0.9	BEDFORM	NONE	1	NONE	TRACE	0			0			0		0	
75.8022	36.6930	97VB108	2 b	spr	6.3	6.3	FS	2.3	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		. 0	Ì
75.8847	36.9081	96VB201	1 b	spr	7.1	7.1	FS	1.7	BEDFORM	NONE	4	NONE	TRACE	0			0			0		0	
75.8846	36.9082	96VB201	2 b	spr	7.1	7.1	FS	1.3	BEDFORM	NONE	2	NONE	TRACE	0			0			0			
75.8677	36.9084	96VB205	1 b	spr	6.3	6.3	FS	1.4	BEDFORM	NONE	NONE	NONE	TRACE	0			0			0		0	
75.8678	36.9086	96VB205	2 b	spr	5.3	5.3	FS	0.7	NONE	NONE	NONE	NONE	TRACE	0			0			0		0	
75.8506	36.9082	96VB209	1 b	spr	5.8	5.8	FS	1.4	SHELL, BED	NONE	NONE	NONE	TRACE	0			0			0		0	
75.8505	36.9082	96VB209	2 b	spr	5.4	5.4	FS	0.3	SHELL, BED	HERMIT CI	NONE	NONE	TRACE	0			0			0		0	
75.8503	36.9084	96VB209	3 b	spr	5	5	FS	2.8	SHELL, BED	NONE	NONE	NONE	TRACE	0			0			. 0		. 0	
75.8509	36.9080	96VB209	4 b	spr	4.7	4.7	FS	2.6	BEDFORM	NONE	NONE	NONE	TRACE	0		-	0			0		0	
75.8692	36.8981	96VB234	1 b	spr	5	5	FS	1.4	SHELL, BEDI	NONE	NONE	NONE	TRACE	0			0			0		0	
75.8688	36.8983	96VB234	2 b	spr	6.8	6.8	FS	2.3	SHELL, BEDI	NONE	NONE	NONE	NONE	0			0			0		0	

Table 5. Spring 1997 SPI analysis.

		Virginia	a Bea	ch S	andr	ining	Projec	SPI vi	sual ar	alysis: S	Spring, 19	Surfac	e struc	t.										
								Sed.	Sed.	Relief		Tube	ş	Subsuri		Infauna	<u></u>	Void	ls					
				Di	ate	PEN	RPD	Туре	Rel.	Туре	Epifauna	+/-	- Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
ON	LAT	cell	rep		97	(cm)	(cm)		(cm)		(+/-)												-	
75.8583	36.8939	96VB246	1	b s	pr	5.6	5.6	FS	1.1	SHELL, BED	INONE	NONE	NONE	TRACE	0			0)	0	
75.8582	36.8939	96VB246	2	b s	pr	5.3	5.3	FS	1.5	BEDFORM	NONE	NONE	NONE	NONE	0			0					0	
		96VB255		b s		4.7				BEDFORM, S		NONE	NONE	NONE	0			0					0	
		96VB255		b s		6.2																		
13.0024	30.6307	30VB255	2	o s	Þτ	0.2	0.2	61	1.5	SHELL, BED	NONE	NONE	NONE	NONE	0			0)	0	<u> </u>
													-											
											 													
																		-						
																	-							
				-																				
													-											
									-				-				1							

Table 6. Fall 1997 SPI analysis (Sandbridge area).

Virginia	a Be	ach	Sandı	mining	Projec	t SPI vi	sual an	alysis		Surface	e struc	t.										
						Sed.	Sed.	Relief		Tube:	5	Subsuri		Infauna	a	Voi	ds					1 to 1 day 1
			Date	PEN	RPD	Туре	Rel.	Type	Epifauna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
cell	rep		97	(cm)	(cm)		(cm)		(+/-)													
SO-001	1	В	FAL	5	ALL	FS	1	BEDFORM	0	0	0	TRACE	0			0			C		0	
SO-001	2	В	FAL	6	1.4	FS	1.2	BEDFORM	0	0	3	TRACE	0			0			C		0	
so-002	1	В.	FAL	7	ALL	MS	1	BEDFORM	0	0	1	TRACE	0			0			0		0	
SO-002	2	В	FAL	6	ALL	MS	0.8	SLOPE	0	0	0	1, TRA	0			0			0		0	
SO-003	1	В	FAL	6	4.2	FS	1.1	BEDFORM	0	0	2	TRACE	0			0			0		0	
so-003	2	В	FAL	6.4	2.7	FS .	0.4	BEDFORM	0	. 0	0	TRACE	0			0			0		0	
SO-004	1	В	FAL	6	ALL	MS	0.5	BEDFORM	1	0	0	TRACE	0			0			0		0	
SO-004	2	В	FAL	6	1.7	FS	0.2	EVEN	0	0	0	TRACE	0		-	0			0		0	
so-005	1	В	FAL	7	ALL	FS	0.8	BEDFORM	1, SANDI	0	0	3	0			0			0		0	
SO-005	2	В	FAL	5	ALL	FS	2.1	SLOPE	1, SANDDO	0	0	TRACE	0			0			0		0	
so-006	1	В	FAL	7.8	ALL	MS	2	BEDFORM	0	0	1	TRACE	0			0			0		. 0	
so-006	2	В	FAL	4	ALL	MS	0.4	EVEN	0	0	0	1, TRAC	0		-	0			0		0	
so-007	1	В	FAL	4.5	1.6	FS	0.9	BEDFORM	0	0	0	TRACE	0			0			0		0	
so-007	2	В	FAL	4.5	0.8	FS-SI	1.5	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-008	1	В	FAL	6	ALL	MS	1.8	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-008	2	В	FAL	7	ALL	MS	3.2	SLOPE	0	0	0	TRACE	0			0			0		0	
SO-009	1	В	FAL	8	ALL	MS	2.8	SLOPE	0	0	0	1, TR	0			0			0		0	
so-009	2	В	FAL	5	ALL	MS	0.3	EVEN	0	0	0	TRACE	0			0			0		0	
SO-010	1	В	FAL	5	ALL	MS	4	MOUND	0	0	0	TRACE	0			0			0		0	
SO-010	2	В	FAL	6	ALL	MS	4.7	SLOPE	0	0	0	0	0			0			0		. 0	
SO-011	1	В	FAL	4	0.4	FS-SI	0.2	EVEN	0	0	0	TRACE	0			0			0		0	

Table 6. Fall 1997 SPI analysis (Sandbridge area).

Virgini	a Beach	Sand	mining	Projec	t SPI vi	sual an			Surface	e struc	t.										
					Sed.	Sed.	Relief		Tube		Subsuri		Infauna-		Voi	is					
		Date	PEN	RPD	Туре	Rel.	Туре	Epifauna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
cell	rep	97	(cm)	(cm)		(cm)		(+/-)													
SO-011	2 B	FAL	4.7	0.3	FS-SI	0.3	EVEN	0	0	0	TRACE	0			0			0		0	
SO-012	1 B	FAL	4.3	0.2	FS-SI	0.2	EVEN	0	0	0	TRACE	. 0			0			0		1	AN
SO-012	2 B	FAL	5.6	0.4	FS-SI	0.3	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-013	1 B	FAL	7.5	1.5	FS	3	BEDFORM	0	0	11	0	0			0			0		0	
SO-013	2 B	FAL	1.8	ALL	FS	0.7	BEDFORM	0	0	15	0	0			0			0		0	
SO-014	1 B	FAL	4	1,2	FS	1.2	BEDFORM	0	0	3	0	0			0			0		0	-
SO-014	2 B	FAL	4.5	1.4	FS-SI	0.8	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-015	1 B	FAL	5.2	1.2	FS	1.2	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-015	2 B	FAL	6	ALL	MS	2.1	SLOPE	0	0	0	TRACE	0			0			0		0	12 12 12 12 12 12 12 12 12 12 12 12 12 1
SO-016	1 B	FAL	8	0.6	FS-SI	0.2	EVEN	0	1	16	TRACE	0			0			0		0	
SO-016	2 B	FAL	11	0.4	FS-SI_	0.3	EVEN	0	0	3	1, TRA	0			0			0		1	ox
SO-017	1 B	FAL	5	0.4	FS-SI	1.	BEDFORM	0	4	0	TRACE	0			0			0		2	AN
SO-017	2 B	FAL	4	0.7	FS-SI	0.6	BEDFORM	0	0	2	2, TRAC	0			0			0		2	ox
SO-018	1 B	FAL	3.7	0.4	FS-SI	0.7	BEDFORM	0	0	0	TRACE	. 0			0			0		0	***************************************
SO-018	2 B	FAL	4	0.3	FS-SI	0.4	BEDFORM	0	0	2	2, TRAC	0			0			0		0	
SO-019	1 B	FAL	4	0.2	FS-SI	0.6	BEDFORM	0	0	0	TRACE	0			0		.,	0		0	
SO-019	2 B	FAL	3.7	0.4	FS-SI	0.7	BEDFORM	1, HERM:	0	0	trace	0			0			0		0	
SO-020	1 B	FAL	1.5	0.2	FS-SI	0.6	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-020	2 B	FAL	. 4	0.2	FS-SI	1	BEDFORM	0	0	0	TRACE	0			0	· 11 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3		0		0	
SO-021	1 B	FAL	14.2	1	FS-SI	0.3	BEDFORM	0	0	2	TRACE	. 0			0			0		3	1, 0x 2, AN
SO-021	2 B	FAL	12	0.3	FS-SI	1.2	MOUND	0	0	1	TRACE	2	WORM	5, 3	0			0		0	

Virginia	Pos	ah.	Candi	ninina	Brojes	t SPI vi	<u></u>	- 1 a i a		Surface		_										
VIIGINIA	Беа	.CII	Sand	mining	Projec								-			-						
		-	,			Sed.	Sed.	Relief		Tube:	3	Subsuri	:	Infauna		Void	is					
			Date	PEN	RPD	Туре	Rel.	Туре	Epifauna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
cell	rep		97	(cm)	(cm)		(cm)		(+/-)											-		
SO-022	1	В	FAL	4.5	0.5	FS-SI	0.7	BEDFORM	0	0	0	1, TRAC	0			0			C)	0	
SO-022	2	В	FAL	6	0.3	FS-SI	0.2	EVEN	0	0	0	TRACE	0			0			C)	0	
SO-023	1	В	FAL	3.7	0.4	FS-SI	0.5	BEDFORM	0	1	0	TRACE	0			0)	0	
SO-023	2	В	FAL	8	2.4	FS-SI	0.3	EVEN	1, HERMI	0	0	TRACE	0			0			C		0	
SO-024	1	В	FAL	3.5	0.3	FS-SI	0.9	BEDFORM	0	0	0	TRACE	0			0			C		0	
SO-024	2	В	FAL	5	0.6	FS-SI	0.7	BEDFORM	0	0		TRACE	0			0			C		0	
SO-025	1		FAL	6.7		FS-SI		EVEN	0	0		TRACE	0			0			0		0	
SO-025	2		FAL	6.5		FS-SI		EVEN	0	0		2, TRAC	0			0						1132 W.H.B.W.
SO-026				6.3															0		0	
			FAL			FS-SI		BEDFORM	0	1		TRACE	0		1 1 1000	0			0		0	
SO-027			FAL	4.7		FS		EVEN	0	0		TRACE	0			0			0		0	
SO-027	2	В	FAL	6	0.5	MS	0.5	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-028	1	В	FAL	7	ALL	MS	4	SLOPE	0	0	0	TRACE	0			0			0		0	•
SO-028	2	В	FAL	6	ALL	MS	0.4	EVEN	0	0	0	TRACE	0			0			0		0	
SO-029	1	В	FAL	6	ALL	MS	1.2	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-029	2	В	FAL	6	ALL	MS	3.2	SLOPE	0	0	. 0	TRACE	0			0	****		0		0	
SO-030	1	В	FAL	6	ALL	MS	2	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-030	2	В	FAL	7	ALL	MS	4.2	SLOPE	0	0	2	TRACE	0			0			0		0	
SO-031	1	В	FAL	7	4.2	FS	0	EVEN	0	0	0	TRACÉ	0			0			0		0	
SO-031	2	В	FAL	6	ALL	MS	2.1	BEDFORM	0	0	0	TRACE	0			0			0		0	
so-032	1	В	FAL	7	ALL	MS	1.2	BEDFORM	0	oi	0	TRACE	0			0			0		0	
SO-032	2		FAL		ALL	MS		MOUND	0	0		TRACE	0			0			0		0	

Table 6. Fall 1997 SPI analysis (Sandbridge area).

Virgini	Beach	Sandı	mining Projec	rt SDT wi	gual an	alveie		Surface	a struc	_									•		
VIIgini	Deaci	Janu	mining riojec	Sed.	Sed.	Relief		Tube		Subsuri		Infauna		Voi	1					111100 11000000	
		Date	PEN RPD	Туре	Rel.	Туре	Epifauna		Pellet			Туре	Depth		Туре	Depth	Gag	Denth	Burrow	Trme	=
cell	rep	97	(cm) (cm)		(cm)	-44	(+/-)					1350	Бором	-	13.00	Берей	Jus	Берси	Bullow	Type	
SO-033	1 B	FAL	10 ALL	MS		SLOPE	0	0	0	TRACE	0			0			0		0		
SO-033	2 B	FAL	9 ALL	MS		SLOPE	0	0		TRACE	0			0			0		0		*
SO-034	1 B	FAL	8 ALL	MS		MOUND	0	0		TRACE	0		 	-							
	2 B													0			0		0		
SO-034			9 ALL	MS		MOUND	0	0		TRACE	0		1	0			0		0		
SO-035	1 B	FAL	7 ALL	MS		EVEN	0	0		TRACE	0			0			0		0		
SO-035	2 B	FAL	5 ALL	FS	2.5	BEDFORM	0	0	0	TRACE	0			0			0		0	,	
SO-036	1 B	FAL	6 ALL	MS	0.5	BEDFORM	0	0	3	TRACE	0			0			0		0		
SO-036	2 B	FAL	7.5 3.	2 FS-SI	0.2	EVEN	0	0	0	TRACE	0			0			0		0		
SO-036	2 B	FAL	6 2.	5 MS	0.4	BEDFORM	0	0	0	TRACE	0			0			0		0		
so-037	1 B	FAL	7 1.	3 MS-SI	0.2	EVEN	. 0	0	0	TRACE	0			0			0		0		
so-037	2 B	FAL	9 3.	4 MS	2.3	SLOPE	0	0	2	TRACE	0			0			0		0		
SO-038	1 B	FAL	9 2.	3 MS	2.4	MOUND	0	0	0	TRACE	0			0			0		0		
SO-038	2 B	FAL	5 ALL	MS	0.2	EVEN	0	0	0	TRACE	0			0			0		0	~~~	
SO-039	1 B	FAL	5.7 ALL	MS	0	EVEN	0	0	0	TRACE	0			0			0		0		
SO-039	2 B	FAL	8 ALL	FS	2.5	MOUND	0	0	1	TRACE	0			0			0		0		
SO-040	1 B	FAL	6 ALL	FS	3.8	MOUND	0	0	0	TRACE	0			0			0		0		
SO-040	2 B	FAL	5 ALL	FS	0	EVEN	0	0	0	TRACE	0			0			0		0		
SO-041	1 B	FAL	5 ALL	FS	0	EVEN	0	0	0	TRACE	0			0			0		0		
SO-041	2 B	FAL	6 0.	3 FS	0.2	EVEN	0	0	3	TRACE	0			0			0		0		
SO-042	1 B	FAL	7 0.:	2 SI	1	BEDFORM	0	0		TRACE	0			0			0		0		
SO-042		FAL		3 FS-SI		BEDFORM	0	0		TRACE	0			0	***************************************		0		0		

Table 6. Fall 1997 SPI analysis (Sandbridge area).

Virginia	Beach	Sandı	mining	Projec	t SPI vi	sual an	alysis		Surface	struc	t.										
					Sed.	Sed.	Relief		Tubes	5	Subsuri		Infauna		Void	s					-
		Date	PEN	RPD	Туре	Rel.	Type	Epifauna	+/-	Pellet	Shell	#	Type	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
cell	rep	97	(cm)	(cm)		(cm)		(+/-)													
SO-044	1 B	FAL	4.3	ALL	FS	3	EVEN	0	0	2	TRACE	0			0			0		0	
SO-044	2 B	FAL	3.7	2.5	FS	0.3	EVEN	0	0	0	TRACE	0			0			0		0	
SO-045	1 B	FAL	6	2.3	MS	0.2	EVEN	0	- 0	4	TRACE	0			0			0		0	
SO-045	2 B	FAL	5.7	ALL	MS	0.2	EVEN	0	1	1	TRACE	0			0			0		0	
SO-046	1 B	FAL	7.2	ALL	FS	0.3	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-046	2 B	FAL	6	2.1	FS	0.4	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-047	1 B	FAL	6	4.2	FS-SI	0.1	EVEN	3, HERMIT	0	0	TRACE	0			0			0		0	
so-047	2 B	FAL	4	3.1	FS-SI	0.2	EVEN	0	1	0	TRACE	0			0			0		0	
SO-081	2 B	FALL	6.9	ALL	MS	1.6	BD, SHELL	0	0	0	TRACE	0			0			0		0	
SO-081	1 B	FALL	6.9	ALL	MS	0.9	BD, SHELL	0	0	0	TRACE	. 0			0			0		0	
SO-082	1 B	FAL	6	ALL	MS	0.2	EVEN, SHEI	0	0	. 0	TRACE	0		-	1	ox	3	0		0	-
SO-082	2 B	FAL	6.3	ALL	MS	2.5	SLOPE	0	0	0	TRACE	0			0			0		0	
SO-083	1 B	FAL	7	ALL	MS	0.3	EVEN	0	0	0	TRACE	0			0	:		0		0	
SO-083	2 B	FAL	5	ALL	FS	0.2	EVEN	0	0	0	TRACE	0			0			0		0	
SO-084	1 B	FAL	7	2.3	FS	0.5	MOUND	0	0	4	TRACE	0			0			0		0	
SO-084	2 B	FAL	7.4	2.7	FS	1.2	BEDFORM	0	0	. 0	TRACE	0			0			0		0	
SO-084	3 B	FAL	6	ALL	FS	1.1	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-085	1 B	FAL	7	ALL	FS	1.2	SLOPE	0	0	0	TRACE	0			0			0		0	
SO-085	2 B	FAL	6	2.7	FS	1.3	BEDFORM	1 SANDDOI	0	3	TRACE	0			0			0		0	
SO-086	1 B	FAL	6	2	MS	0.8	BD, SHELL	0	0	0	5	0			0			0		0	
SO-086	2 B	FAL	6	0.2	MS	0.3	EVEN	0	0	1	1, TRA	0			0			0		0	

Table 6. Fall 1997 SPI analysis (Sandbridge area).

Virginia	Bea	ch	Sandı	mining	Project	SPI vi	sual an	alysis		Surface	e struc	t.										
						Sed.	Sed.	Relief		Tube:	g	Subsuri	:	Infauna		Voi	is					
			Date	PEN	RPD	Type	Rel.	Type	Epifauna	+/-	Pellet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре
cell	rep		97	(cm)	(cm)		(cm)		(+/-)													- 10
SO-087	1	В	FAL	6.2	2.9	MS	0.4	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-087	2	В	FAL	6	ALL	FS	0.1	EVEN	0	0	0	TRACE	0			0			0		0	
so-088	1	В	FAL	. 7	ALL	FS	1.4	MOUND	0	0	1	TRACE	0			0			0	-	0	
SO-088	2	В	FAL	8	3.2	FS	0.2	EVEN	0	0	2	TRACE	0		-	0			0		0	
SO-089	1	В	FAL	7	ALL	MS	1	BEDFORM	0	0	1	TRACE	0			0			0		0	
SO-089	2	В	FAL	5	ALL	FS	3.8	SLOPE	0	0	0	TRACE	0			0			0		0	
SO-090	1	В	FAL	7	ALL	FS	2	SLOPE	0	0	1	TRACE	0			0			0		0	
SO-090	2	В	FAL	6	ALL	MS	2	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-091	1	В	FAL	- 6	2.3	MS	0.3	EVEN	0	0	0	TRACE	0			0			0		0	
SO-091	2	В	FAL	6	2.6	MS	0.2	EVEN	0	0	0	TRACE	0			0			0		0	
SO-092	1	В	FAL	6.3	ALL	FS	2	BD, SLOPE	1, SANDDO	0	0	TRACE	0			0			0		0	
SO-092	2	В	FAL	7	ALL	FS	0.2	EVEN	0	0	0	TRACE	0			0			0		0	
SO-093	1	В	FAL	6.5	ALL	FS	0.5	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-093	2	В	FAL	6	ALL	FS	0.6	BEDFORM	0	0	0	TRACE	0		<u> </u>	0			0		0	
SO-094	1	В	FAL	5.6	ALL	FS	1.2	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-094	2	В	FAL	7	2.7	FS	0.3	EVEN	. 0	. 0	0	TRACE	0			0			0		0	-
SO-095	1	В	FAL	8	1.9	MS	0.8	BEDFORM	0	0	0	0	0			0			0		0	
SO-095	2	В	FAL	6	ALL	MS	0.9	BEDFORM	0	0	0	TRACE	0			0			0		0	
SO-096	1	В	FAL	6	ALL	MS	1.3	BEDFORM	0	0	0	TRACE	0			0			0		0	7400
SO-096	2	В	FAL	7	2.3	MS	1.2	BEDFORM	0	0	0	TRACE	0		-	0		Marana .	0		0	
SO-097	1	В	FAL	6	1.6	MS	1	MOUND	0	0	1	TRACE	0			0			0		0	

Virginia	Beac	h Sand	mining	Project	SPI vi	sual an	alysis		Surface s	truc	t.										****	
					Sed.	Sed.	Relief		Tubes	-	Subsuri		Infauna	a	Voi	is						
		Date	PEN	RPD	Туре	Rel.	Туре	Epifauna	+/- Pe	llet	Shell	#	Туре	Depth	#	Туре	Depth	Gas	Depth	Burrow	Туре	
cell	rep	97	(cm)	(cm)		(cm)		(+/-)														
30-097	2 E	FAL	7	4.2	MS	0.3	EVEN	0	0	0	TRACE	0			0			0		0		
50-098	1 E	FAL	6	ALL	FS	1.3	MOUND	0	0	2	7	0			0			0		0		_
50-098	2 E	FAL	6	ALL	FS	0.3	EVEN	0	0	0	0	0			0			0		0		
SO-099	1 E	FAL	6	3.7	FS	0.4	BEDFORM	0	0	1	5	0			0			0		0.		
50-099	2 E	FAL	5	ALL	FS	0.8	BEDFORM	0	0	0	0	0			0			0		0		
SO-100	1 E	FAL	6	ALL	MS	1.4	BEDFORM	0	0	0	TRACE	0			0			0		0		
SO-100	2 E	FAL	5	ALL	FS	0.3	EVEN	0	0	0	TRACE	0			0			0		0		
r2	1 E	FAL	6	ALL	FS	0.4	BEDFORM	0	0	0	TRACE	0			0			0		0		
Г2	2 E	FAL	6.3	ALL.	MS	0.2	EVEN	0	0	0	TRACE	0			0			0		0		
***								-														*****
		-																				
-																						

Heading	Subheading	Meaning
LON		-Longitude W in decimal degrees
LAT		Latitude N in decimal degrees
cell		Sample cell (station) number ("1 - 400" are identical to "96001 - 96400" labeled on maps)
rep		Deployment number at a station
Date		Season, spr (spring) or fall (fall)
PEN		Average SPI prism window penetration depth (cm) into the sediments
RPD		Average depth (cm) of the apparent color redox potential discontinuity (RPD)
Sed. Type		Sediment type class CL = clay SI = silt SA = sand VFS = very fine sand FS = fine sand MS = medium sand CS = coarse sand GRV = gravel (granule to pebbles)
Sed. Rel.		Vertical linear extrema of the sediment-water interface (SWI) contour, difference (cm) between highest and lowest points on the surface
Relief Type		Structure origin primarily responsible for roughness (surface relief)
Epifauna	(+/-)	Presence (+) or absence (-) of epifaunal organisms at the SWI, and
		type of epifauna; GAST (gastropod), SAND DOLLAR, CRUSTACEAN
Tubes		Presence or number of tubes protruding above the sediment surface
Pellets		Presence (+ or Y or Pos.) or Absence (- or N or Neg.) of biological fecal pellets at the SWI
Subsurf. Sh	ell	Amount of shell material mixed in with the sediments, approximate
-		percentages or trace presence or absence listed
Infauna	# Type Depth	Number of infaunal organisms visible in the sediments Type of infauna visible; WORM, CRUSTACEAN Depth (cm) of the infauna visible below the SWI
Voids	# Type Depth	Number of water filled voids Type of void Depth (cm) of water filled void below SWI
Gas		Number of gas filled voids
	Depth	Depth (cm) of gas void below SWI
Burrow		Infaunal burrow structures evident in the image
	Type	Oxidized (OX) or anoxic (AN) sediments in and around burrow

Table 7. Sediment grain size analysis for samples from Spring, 1997.

96013 96024	MMDDYY 61897 61897	(%) 80.5	(meq/g)	(g)	(0/.)	(0/)	4	
		80.5			(%)	(%)	(%)	(%)
96024	61897		2.0	8.01	0	0	100	0
		76.8	3.2	13.295	0	9.5149	90.4851	0
96049	61897	86.5	1.8	15.32	0	0	10	0
96066	61897	75.5	3.2	6.505	10.146	21.1376	68.7164	0
96104	61897	70.8	4.8	10.475	1.1933	11.9332	86.8735	0
96106	61897	49.6	11.4	6.05	11.4876	16.4463	72.0661	0
96115	61897	84.1	1.8	13.39	0	0	100	0
96137	61897	91.1	1.8	12.03	0	0	72.818	27.18
96174	61897	76.8	4.0	12.36	0	2.9126	97.0874	0
96185	61897	79.9	2.0	11.2	0	0	100	0
96194	61897	81.8	1.8	11.55	0	0	100	0
96201	61897	82.9	1.4	11.4	0	0	100	0
96205	61897	80.2	1.6	16.53	0	0	100	0
96209	61897	83.2	1.8	13.3	0	0	100	0
96234	61997	84.0	1.2	10.98	0	0	100	0
96246	61997	75.7	1.0	12.27	0 ,	0	100	0
96255	61997	76.6	1.8	11.82	0	0	96.0237	3.98
96316	61897	86.4	1.8	13.55	0	0	99.0406	0.96
96332	61897	76.6	2.6	8.89	0	8.2115	91.7885	0
96347	61897	87.7	1.2	15.97	0	0	100	0
96353	61897	92.1	1.2	12.51	0	0	58.753	41.25
96365	61897	85.6	1.6	14.15	0	0	83.7456	16.25
97076	61897	85.7	1.0	11.11	0	0	100	0
97088	61897	89.6	3.4	12.34	0	0	98.1361	1.86
97096	61897	84.6	1.8	16.47	0	0	45.7802	54.22
97104	61897	84.9	4.8	14.48	0	0	93.232	6.77
97107	61897	75.3	1.6	13.685	0	3.9094	87.9795	8.11

Table 8. Habitat class determinations identified using SPI images spring and fall 1996.

Class	Origin of primary characteristics	Modal sediment type	General description
Α	Biological	Silt to silty-clay	Silty mud with high abundance of large infauna and infaunal living structrures, and sediment fabric generally dilated and bioturbated, apparent as color discontinuities or water filled void regions in sediment profile images (SPI)
В	Physical	Silt to sandy-clayey-silt	Silt to sandy-clayey-silt with little or no faunal presence or activity, sediment fabric not bioturbated
С	Combination biological and physical	Silty fine-sand to very fine sand	Silty fine sand to fine sand with variable faunal presence or activity; evidence of some biological activities, but biological features compose less than half of apparent features in the image
D	Physical	Fine to medium sand	Fine to medium sand with little or no faunal or biological feature presence
E	Biological	Fine to medium sand	Fine to medium sand with most apparent features biologically constructed
F	Physical	Medium to coarse sand and shell	Medium to coarse sand mixed with biogenic calcareous shell material, but little or no active faunal presence
G	Biological	Medium to coarse sand and shell	Medium to coarse sand mixed with shell material, and active faunal structures or presence of fauna
Н	Physical	Coarse sand to gravel	Coarse sand to gravel with little or no apparent biological activity or recent structures
1	Physical/Transitional	Coarse sediments layered over fine	Layered sediments, where coarse grain-size material has been deposited over fine material, and active biological features are absent; observed: fine sand over clay, very fine sand over clay, and medium sand over clay

Table 9. Counts (number of cells in which the habitat class was present) and percentages of habitat class determinations identified using SPI images spring and fall 1996.

Spring 1996			Fall 1996		
Class	Cell Count	Percentage	Class	Cell Count	Percentage
Α	15	9.6	Α	12	6.3
В	0	0.0	В	3	1.6
C	73	46.6	С	100	52.1
D	31	19.8	D	39	20.4
Е	10	6.1	E	5	2.6
F	15	9.6	F	28	14.7
G	9	5.4	G	0	0.0
Н	5	2.9	H ×	2	1.0
1	0	0.0	l L	3	1.3
Total	157	100.0	Total	191	100.0

-LON	LAT	CELL	Spr. 96	Fall 96	Spr. 96	Fall 96	
75.000000	04.000	•					
-75.9388333	36.882	1	C	С	COMBI	COMBI	
-75.9398333	36.883	1	С	С	СОМВІ	СОМВІ	
-75.9316667	36.882	3	A	С	BIO	COMBI	
-75.9326667	36.883	3	A	C ·	BIO	COMBI	
-75.9225	36.882	5	D		PHYS		
-75.9235	36.883	5	D		PHYS		
-75.9141667	36.882	7	G		BIO		
-75.9151667	36.883	7	G		BIO		
-75.9073333	36.883	9	G	E	BIO	BIO	
-75.9063333	36.882	9	G	В	BIO	PHYS	
-75.9336667	36.8783333	12	A	С	BIO	COMBI	
-75.9346667	36.8793333	12	Α	С	BIO	COMBI	
-75.9268333	36.8793333	14	Α	Е	BIO	BIO	
-75.9258333	36.8783333	14	Α	D	BIO	PHYS	
-75.9175	36.8783333	16	Α	С	BIO	СОМВІ	
-75.9185	36.8793333	16	A	С	BIO	СОМВІ	
-75.9091667	36.8783333	18	G	F	BIO	PHYS	
-75.9101667	36.8793333	18	G	F	BIO	PHYS	
-75.9	36.8783333	20	G	D	BIO	PHYS	
-75.901	36.8793333	20	G	D	BIO	PHYS	
-75.9366667	36.8741667	21	С	С	COMBI	COMBI	
-75.9376667	36.8751667	21	С	С	COMBI	СОМВІ	
-75.9283333	36.8741667	23	Α	Α	BIO	BIO	
-75.9293333	36.8751667	23	Α	Α	BIO	BIO	
-75.9203333	36.8741667	25	G	Α	BIO	BIO	
-75.9213333	36.8751667	25	G	Α	BIO	BIO	
-75.9116667	36.8741667	27	D	F	PHYS	PHYS	
-75.9126667	36.8751667	27	F	F	PHYS	PHYS	
-75.9033333	36.8741667	29	F	F	PHYS	PHYS	
-75.9043333	36.8751667	29	F	F	PHYS	PHYS	
-75.9326667	36.871	32	Α	С	BIO	СОМВІ	
-75.9316667	36.87	32	С	С	COMBI	СОМВІ	
-75.9316667	36.87	32	Α		BIO		
-75.9243333	36.871	34	G	D	BIO	PHYS	-
-75.9233333	36.87	34	G	D	BIO	PHYS	
-75.916	36.871	36	G	D	BIO	PHYS	
-75.915	36.87	36	G	F	BIO	PHYS	
-75.9075	36.87	38	E	Α	BIO	BIO	
-75.9085	36.871	38	E		BIO		
-75.8993333	36.871	40	F	D	PHYS	PHYS	
-75.8983333	36.87	40	F	D	PHYS	PHYS	
-75.9351667	36.8676667	41	С	c	СОМВІ	COMBI	
-75.9341667	36.8666667	41	C	C	COMBI	COMBI	
-75.9268333	36.8676667	43	C	A	COMBI	BIO	
-75.9258333	36.8666667	43	C	A	COMBI	BIO	
-75.9185	36.8676667	45	D	D	PHYS	PHYS	
-75.9185	36.8676667	45	_	D	1	PHYS	
-75.9175	36.8666667	45	E		BIO		
-75.91	36.8666667	47	A	В	BIO	PHYS	
-75.911	36.8676667	47	G	D	BIO	PHYS	
-75.9026667	36.8676667	49	E	D	BIO	PHYS	
	22.20,000,			- ;	. 510		1

-LON	LAT	CELL	Spr. 96	Fall 96	Spr. 96	Fall 96	
-75.9016667	36.8666667	49	D	D	PHYS	PHYS	
-75.9283333	36.8621667	52	Α	Α	BIO	BIO	
-75.9293333	36.8631667	52	Α	Α	BIO	BIO	
-75.9208333	36.8621667	54	E	D	BIO	PHYS	
-75.9218333	36.8631667	54	E	D	BIO	PHYS	
-75.9143333	36.8631667	56	G	D	BIO	PHYS	
-75.9133333	36.8621667	56	F	D	PHYS	PHYS	
-75.9033333	36.8621667	58	E	Α	BIO	BIO	
-75.9043333	36.8631667	58	E	Α	BIO	BIO	
-75.9291667	36.8621667	60	F	D	PHYS	PHYS	
-75.9301667	36.8631667	60	F	D	PHYS	PHYS	
-75.9316667	36.8583333	61		С		COMBI	
-75.9326667	36.8593333	61		С		COMBI-	
-75.9241667	36.8583333	63	Α	Α	BIO	BIO	
-75.9251667	36.8593333	63	A	A	BIO	BIQ	
-75.9158333	36.8583333	65	E	1	BIO	PHYS	
-75.9168333	36.8593333	65	E	<u> </u>	BIO	PHYS	
-75,9075	36.8583333	67	D	D	PHYS	PHYS	
-75.9085	36.8593333	67	D	D	PHYS	PHYS	
-75.9001667	36.8593333	69	E	D	BIO	PHYS	
-75.8991667	36.8583333	69	G	D	BIO	PHYS	
-75.9258333	36.8541667	72	C	C	COMBI	COMBI	
-75.9268333	36.8551667	72	C	C	COMBI	COMBI	
-75.9183333	36.8541667	74	D	D	PHYS	PHYS	
-75.9193333	36.8551667	74	D		PHYS	rnis	
-75.91	36.8541667	76	E	D	BIO	PHYS	
-75.911	36.8551667	76	D	D	PHYS	PHYS	
-75.9026667	36.8551667	78	A	С	BIO	COMBI	
-75.9016667	36.8541667	78	c	D	COMBI	PHYS	
-75.8933333	36.8541667	80	E	D	BIO	PHYS	
-75.8943333	36.8551667	80	E	D	BIO	PHYS	
-75.93	36.8508333	81	<u> </u>	С	ВЮ	COMBI	
-75.931	36.8518333	81		C			
-75.9226667	36.8518333	83	A	A	BIO	COMBI BIO	
-75.9216667	36.8508333	83	A	<u>^</u>			
	36.8508333	85		D	BIO	PHYS	
-75.9133333 -75.9143333	36.8518333	85	D D	D D	PHYS PHYS	PHYS	
-75.906	36.8518333	87	C	C	COMBI	COMBI	
		87	D .	C			
-75.905	36.8508333	89		D	PHYS	COMBI	
-75.8958333	36.8508333		E		BIO	PHYS	
-75.8968333	36.8518333	89	E	D	BIO	PHYS	
-75.9233333	36.8466667	92		D		PHYS	
-75.9243333	36.8476667	92	Ė	D	NO.	PHYS	
-75.9166667 75.0174447	36.8466667	94	E	E	BIO	BIO	
-75.9176667	36.8476667	94	D	D	PHYS	PHYS	
-75.9093333	36.8476667	96	C	C	COMBI	COMBI	
-75.9083333	36.8466667	96	D	B	PHYS	PHYS	
-75.9001667	36.8476667	98	E	C	BIO	COMBI	
-75.8991667	36.8466667	98	E	D	BIO	PHYS	
-75.8908333	36.8466667	100	C	<u>C</u>	COMBI	COMBI	
-75.8918333	36.8476667	100	С	C	СОМВІ	COMBI	
-75.9266667	36.8433333	101		С		COMBI	

-LON	LAT	CELL	Spr. 96	Fall 96	Spr. 96	Fall 96	
-75.9276667	36.8443333	101		С	·	СОМВІ	**************************************
-75.9201667	36.8443333	103		Α		BIO	
-75.9191667	36.8433333	103		С		СОМВІ	
-75.9108333	36.8433333	105		D		PHYS	
-75.9118333	36.8443333	105		D		PHYS	
-75.903	36.8433333	107		С		СОМВІ	
-75.904	36.8443333	107		С		COMBI	
-75.8938333	36.8433333	109	С	E	СОМВІ	BIO	
-75.8948333	36.8443333	109	С	E	СОМВІ	BIO	
-75.9216667	36.8391667	112		E		BIQ	
-75.9226667	36.8401667	112		D		PHYS	
-75.9151667	36.8401667	114		E		BIO	
-75.9141667	36.8391667	114		D	-	PHYS	
-75.9058333	36.8391667	116		C		СОМВІ	
-75.9068333	36.8401667	116		D		PHYS	
-75.897	36.8391667	118		С		COMBI	
-75.898	36.8401667	118		C		COMBI	
-75.8883333	36.8391667	120	Α	C	BIO	COMBI	
-75.8893333	36.8401667	120	A	C	BIO	COMBI	
-75.9241667	36.8358333	121	D	D	PHYS	PHYS	
-75.9251667	36.8368333	121	D	D	PHYS	PHYS	
-75.9168333	36.8368333	123	C	D	COMBI	PHYS	
-75.9158333	36.8358333	123	D	D	PHYS	PHYS	
-75.9093333	36.8368333	125		C	FIII3	COMBI	
-75.9083333	36.8358333	125		D		PHYS	
-75.9	36.8358333	127		E		BIO	
-75.901	36.8368333	127		F	:	PHYS	
-75.8916667	36.8358333	129		C			
-75.8926667	36.8368333	129		c		COMBI	
-75.92	36.8316667	132	c	c	СОМВІ	COMBI	
-75.921	36.8326667	132	C	С	COMBI	COMBI	
-75.9116667	36.8316667	134	D	D	PHYS	COMBI	
-75.9126667	36.8326667	134		D	гпіз	PHYS	
-75.9033333	36.8316667	136		F		PHYS	
-75.9043333	36.8326667	136		F		PHYS	
-75.8966667	36.8316667	138		F		PHYS	
-75.8976667	36.8326667	138		F		PHYS PHYS	
-75.8858333	36.8316667	140	D	F	PHYS	PHYS	
-75.8868333	36.8326667	140	<u> </u>	F	PHIS		
-75.9225	36.828	141	D	E	PHYS	PHYS	
-75.9235	36.829	141	D	E	PHYS	BIO	
-75.9141667	36.828	143	С	C	COMBI	BIO	
-75.9141007	36.829	143	C	С		COMBI	
		145	D		PHYS	COMBI	
-75.9066667	36.828			D		PHYS	
-75.9076667 -75.8978333	36.829	145	D	D F	PHYS	PHYS PHYS	
	36.828	147		F			
-75.8988333 -75.8801667	36.829	147				PHYS	
-75.8891667 -75.8001667	36.828 36.829	149		Α Λ		BIO	
-75.8901667 75.0159333		152		D	BUIVE	BIO	
-75.9158333 75.0168333	36.8236667	152	D		PHYS	PHYS	
-75.9168333	36.8246667		D	D	PHYS	PHYS	
-75.9083333	36.8236667	154	С	D	COMBI	PHYS	

						T	
-75.9093333	36.8246667	154	C	D	СОМВІ	PHYS	
-75.9	36.8236667	156	F	D	PHYS	PHYS	
-75.901	36.8246667	156	F	D	PHYS	PHYS	
-75.8925	36.8236667	158		F		PHYS	
-75.8935	36.8246667	158		F		PHYS	
-75.8833333	36.8236667	160		D		PHYS	
-75.8843333	36.8246667	160		D		PHYS	
-75.92	36.8196667	161	_ C	С	COMBI	СОМВІ	
-75.921	36.8206667	161		С		СОМВІ	
-75.9133333	36.8196667	163	D	С	PHYS	COMBI	
-75.9143333	36.8206667	163	D	С	PHYS	COMBI	
-75.9041667	36.8196667	165	D	С	PHYS	COMBI	
-75.9051667	36.8206667	165	D	С	PHYS	СОМВІ	
-75.8968333	36.8206667	167	Н	D	PHYS	PHYS	
-75.8958333	36.8196667	167	Н	F	PHYS	PHYS	
-75.8866667	36.8196667	169		В		PHYS	
-75.8876667	36.8206667	169		В		PHYS	
-75.9141667	36.8158333	172	С	С	COMBI	СОМВІ	
-75.9151667	36.8168333	172		С		СОМВІ	
-75.9076667	36.8168333	174	D	С	PHYS	COMBI	
-75.9066667	36.8158333	174	D	1	PHYS	PHYS	
-75.8985	36.8168333	176	D	D	PHYS	PHYS	
-75.8975	36.8158333	176	F	D	PHYS	PHYS	-
-75.8891667	36.8158333	178	C	С	COMBI	СОМВІ	
-75.8901667	36.8168333	178	C	C	COMBI	COMBI	
-75.8816667	36.8158333	180		C	CONIDI	COMBI	
-75.8826667	36.8168333	180		C		COMBI	
-75.9166667	36.8116667	181	С	C	СОМВІ	COMBI	
-75.9176667	36.8126667	181	c	C	COMBI	COMBI	
-75.9083333	36.8116667	183	C	C	COMBI		
-75.9093333 -75.9093333	36.8126667	183		C	COIVIBI	COMBI	
		185			COMPI	COMBI	
-75.9008333	36.8116667		C	С	COMBI	COMBI	
-75.9018333	36.8126667	185	С	С	COMBI	COMBI	
-75.8925	36.8116667	187	С	С	COMBI	COMBI	
-75.8935	36.8126667	187	С		COMBI		
75.8925	36.8116667	187	С		COMBI		
75.8851667	36.8126667	189		С		СОМВІ	
75.8841667	36.8116667	189		С		COMBI	
75.9126667	36.809	192		С		COMBI	
75.9116667	36.808	192		С		COMBI	
-75.9043333	36.809	194	С	С	COMBI	COMBI	
-75.9033333	36.808	194		С		COMBI	
-75.896	36.809	196	С	С	COMBI	COMBI	
-75.895	36.808	196	С	С	СОМВІ	СОМВІ	
-75.8885	36.809	198		С		COMBI	
-75.8875	36.808	198		С		COMBI	
75.8793333	36.809	200		С		СОМВІ	
75.8783333	36.808	200		С		COMBI	
-75.886	36.9093333	201	С	С	COMBI	COMBI	
-75.885	36.9083333	201	С	С	COMBI	СОМВІ	
75.8776667	36.9093333	203	С	С	СОМВІ	COMBI	
-75.8766667	36.9083333	203	С	С	СОМВІ	СОМВІ	

-LON	LAT	CELL	Spr. 96	Fall 96	Spr. 96	Fall 96	
-75.8685	36.9093333	205	C	С	СОМВІ	COMBI	
-75.8675	36.9083333	205	С	С	COMBI	COMBI	
-75.8685	36.9093333	205	С		COMBI		
-75.86	36.9083333	207	С		СОМВІ		
-75.861	36.9093333	207	С		COMBI		
-75.8508333	36.9083333	209	С		COMBI		
-75.8518333	36.9093333	209	С		COMBI		
-75.8508333	36.9083333	209	С		COMBI		
-75.8806667	36.9063333	212	С	С	COMBI	COMBI	
-75.8796667	36.9053333	212	С	С	COMBI	COMBI	
-75.8718333	36.9063333	214	С	С	COMBI	COMBI	
-75.8708333	36.9053333	214	С	С	COMBI	COMBI	
-75.8638333	36.9063333	216	С	С	COMBI	COMBI	
-75.8628333	36.9053333	216	С	С	COMBI	COMBI	
-75.8551667	36.9063333	218		С		COMBI	
-75.8541667	36.9053333	218		С		COMBI	
-75.8468333	36.9063333	220	С	C	СОМВІ	COMBI	
-75.8458333	36.9053333	220	С	С	COMBI	COMBI	
-75.8468333	36.9063333	220	С		COMBI		
-75.8825	36.902	221		С		СОМВІ	
-75.8835	36.903	221		С		COMBI	
-75.8741667	36.902	223	С	С	COMBI	COMBI	
-75.8751667	36.903	223	С	С	СОМВІ	СОМВІ	
-75.8741667	36.902	223	С		СОМВІ		
-75.8668333	36.903	225	С	С	COMBI	СОМВІ	
-75.8658333	36.902	225	С	С	COMBI	COMBI	
-75.8576667	36.903	227	С	С	COMBI	СОМВІ	
-75.8566667	36.902	227	С	С	СОМВІ	СОМВІ	
-75.8493333	36.903	229	С	С	СОМВІ	COMBI	
-75.8483333	36.902	229	С	С	COMBI	СОМВІ	
-75.8785	36.8993333	232	С	С	COMBI	СОМВІ	,
-75.8775	36.8983333	232	С		COMBI		
-75.8785	36.8993333	232	С		COMBI		
-75.8691667	36.8983333	234	С	С	СОМВІ	СОМВІ	
-75.8701667	36.8993333	234	С	С	COMBI	СОМВІ	
-75.8603333	36.8983333	236	С	С	COMBI	COMBI	
-75.8613333	36.8993333	236	С	С	COMBI	СОМВІ	
-75.8603333	36.8983333	236	С		COMBI		
-75.8526667	36.8993333	238	С	С	COMBI	СОМВІ	
-75.8516667	36.8983333	238	С	С	COMBI	СОМВІ	
-75.8443333	36.8993333	240	С	С	COMBI	СОМВІ	
-75.8433333	36.8983333	240	С	С	COMBI	COMBI	
-75.8818333	36.8951667	241	·	С		СОМВІ	
-75.8808333	36.8941667	241		С		COMBI	
-75.8726667	36.8951667	243	С	С	COMBI	СОМВІ	
-75.8716667	36.8941667	243	С	С	COMBI	COMBI	
-75.8633333	36.8941667	245	С	C ·	COMBI	COMBI	
-75.8643333	36.8951667	245		С		COMBI	
-75.856	36.8951667	247	С	С	COMBI	СОМВІ	
-75.855	36.8941667	247	С	С	COMBI	COMBI	- Control of the Cont
-75.8471667	36.8951667	249	С	С	СОМВІ	COMBI	
-75.8461667	36.8941667	249	С	С	COMBI	COMBI	

-LON	LAT	CELL	Spr. 96	Fall 96	Spr. 96	Fall 96	
-75.876	36.8918333	252		С	·····	COMBI	
-75.875		252		С		СОМВІ	
-75.8676667	36.8918333	254	С	С	СОМВІ	СОМВІ	
-75.8666667	36.8908333	254	С	С	СОМВІ	СОМВІ	
-75.8593333	36.8918333	256	С	С	COMBI	СОМВІ	
-75.8583333	36.8908333	256	С	С	СОМВІ	СОМВІ	
-75.8506667	36.8918333	258	С	С	СОМВІ	COMBI	
-75.8496667	36.8908333	258	С	С	СОМВІ	СОМВІ	
-75.8506667	36.8918333	258	С		СОМВІ		
-75.8408333	36.8908333	260	С	С	СОМВІ	СОМВІ	
-75.8418333	36.8918333	260	С	С	СОМВІ	COMBI	
-75.8775	36.8866667	261		c		COMBI	
-75.8785	36.8876667	261		С		COMBI	
-75.8691667	36.8866667	263		С		COMBI	
-75.8701667	36.8876667	263		C		COMBI	
-75.8608333	36.8866667	265	С	C	СОМВІ	COMBI	
-75.8618333	36.8876667	265	c	C	COMBI	COMBI	
-75.8525	36.8866667	267	C	C			
-75.8535	36.8876667	267		C	COMBI	COMBI	
-75.8441667		269	С	C	COMPI	COMBI	
	36.8866667	269	C	С	COMBI	COMBI	
-75.8451667	36.8876667				COMBI	COMBI	
-75.8725	36.8825	272		C		COMBI	
-75.8735	36.8835	272		C	:,	COMBI	
-75.8638333	36.8825	274		С		COMBI	
-75.8648333	36.8835	274		C		COMBI	
-75.855	36.8825	276	С	C	COMBI	COMBI	
-75.856	36.8835	276	C	С	COMBI	СОМВІ	
-75.8466667	36.8825	278	C	С	COMBI	COMBI	
-75.8476667	36.8835	278	С		COMBI		
-75.8383333	36.8825	280	С	С	СОМВІ	СОМВІ	
-75.8393333	36.8835	280	С	С	COMBI	COMBI	
-75.875	36.8783333	281		С		СОМВІ	
-75.876	36.8793333	281		С		СОМВІ	
-75.8666667	36.8783333	283		С		COMBI	
-75.8676667	36.8793333	283		С		COMBI	
-7-5.8583333		285		С		COMBI	
-75.8593333	36.8793333	285		С		СОМВІ	
-75.8496667	36.8783333	287	С	С	СОМВІ	COMBI	
-75.8506667	36.8793333	287	C	С	СОМВІ	COMBI	
-75.8408333	36.8783333	289	С	С	COMBI	COMBI	
-75.8418333	36.8793333	289	С	С	COMBI	COMBI	
-75.87	36.8741667	292		С		СОМВІ	
-75.871	36.8751667	292		С		СОМВІ	
-75.8616667	36.8741667	294		С		СОМВІ	
-75.8626667	36.8751667	294		С		СОМВІ	
-75.8533333	36.8741667	296		С		СОМВІ	
-75.8543333	36.8751667	296		С		COMBI	
-75.8441667	36.8741667	298	С	С	COMBI	COMBI	
-75.8451667	36.8751667	298	С	С	COMBI	COMBI	
-75.8363333	36.8741667	300	С	С	COMBI	COMBI	
-75.8373333	36.8751667	300	С	С	COMBI	COMBI	
-75.9033333	36.7613333	301	С		COMBI		

-LON	LAT	CELL	Spr. 96	Fall 96	Spr. 96	Fall 96	
-75.9043333	36.7623333	301	С	***************************************	СОМВІ	, , , , , , , , , , , , , , , , , , ,	
-75.8958333	36.7613333	303	Α	С	BIO	COMBI	
-75.8968333	36.7623333	303	Α	С	BIO	COMBI	
-75.8883333	36.7613333	305	D	F	PHYS	PHYS	
-75.8893333	36.7623333	305	D	F	PHYS	PHYS	
-75.8796667	36.7613333	307	D	F	PHYS	PHYS	
-75.8806667	36.7623333	307	D	F	PHYS	PHYS	
-75.8708333	36.7613333	309	D	F	PHYS	PHYS	1
-75.8718333	36.7623333	309	D	F	PHYS	PHYS	
-75.8983333	36.758	312	Α	С	BIO	СОМВІ	
-75.8993333	36.759	312	С	С	СОМВІ	COMBI	
-75.8908333	36.758	314	A	A	BIO	BIO	
-75.8918333	36.759	314	A	A	BIO	BIO	
-75.8825	36.758	316	D	F	PHYS	PHYS	
-75.8835	36.759	316	D	F	PHYS	PHYS	
-75.8741667	36.758	318	D	D	PHYS	PHYS	
-75.8751667	36.759	318	D	D	PHYS	PHYS	
-75.8658333	36.758	320	D		PHYS	PHYS	
-75.8668333	36.759	320	D	 F	PHYS	PHYS	
-75.9016667	36.7533333	321	c	C	СОМВІ	COMBI	
-75.9026667	36.7543333	321	C	c	COMBI	COMBI	
-75.8945	36.7533333	323	C	C	COMBI	COMBI	
-75.8955	36.7543333	323	c	C	COMBI	COMBI	
-75.8863333	36.75333333	325	D	F	PHYS	PHYS	-
-75.8873333	36.7543333	325	D	 F	PHYS	PHYS	
-75.878	36.7533333	327	D	 F	PHYS	PHYS	
-75.879	36.7543333	327	D	F	PHYS	PHYS	
-75.8695	36.7533333	329	D	D	PHYS	PHYS	
-75.8705	36.7543333	329		D -	FIIIS	PHYS	
-75.8958333	36.75	332	С	C	СОМВІ	COMBI	
-75.8968333	36.751	332	c	C	COMBI	COMBI	
-75.8875	36.75	334	D	F	PHYS	PHYS	
-75.8885	36.751	334	D	F			
-75.8808333	36.75	336	F	<u> </u>	PHYS PHYS	PHYS	
-75.8818333	36.751	336	F	F		PHYS	
					PHYS	PHYS	
-75.8716667 -75.8726667	36.75 36.751	338 338	D D	D D	PHYS PHYS	PHYS	
-75.8633333	36.75	340	A	D	BIO	PHYS PHYS	
-75.8643333	36.751	340	^	F	ВЮ	PHYS	
-75.8991667	36.7458333	341	C	C	СОМВІ	COMBI	
-75.8991007 -75.9001667	36.7468333	341	c	C	COMBI	COMBI	
-75.9001007	36.7458333	343	A	A	BIO	BIO	
-75.8908333	36.7468333	343	A	A	BIO	BIO	
-75.8825	36.7458333	345	F	F	PHYS	PHYS	
-75.8835	36.7468333	345	F	F	PHYS	PHYS	
-75.8741667	36,7458333	345	D	D D	PHYS	PHYS	
	36.7468333	347	D	D	PHYS		
-75.8751667 75.866667	36.7458333	349	С	D		PHYS PHYS	
-75.8666667 75.8676667	36.7468333	349	C	D	COMBI	PHYS	
-75.8676667			C	-	COMBI	PHYS	
-75.8933333	36.7416667	352		С	COMBI	COMBI	
-75.8943333 -75.8876667	36.7426667 36.7426667	352 354	C F	C F	COMBI PHYS	COMBI PHYS	

	LAT	CELL	Spr. 96	Fáll 96	Spr. 96	Fall 96	
-75.8866667	36.7416667	354	Н	F	PHYS	PHYS	***************************************
-75.8783333	36.7416667	356	D	D	PHYS	PHYS	,
-75.8793333	36.7426667	356	D	D	PHYS	PHYS	
-75.871	36.7426667	358	С	С	COMBI	СОМВІ	
-75.87	36.7416667	358		С		СОМВІ	
-75.8608333	36.7416667	360	F	F	PHYS	PHYS	
-75.8618333	36.7426667	360		F		PHYS	
-75.8966667	36.738	361	С	С	COMBI	СОМВІ	
-75.8976667	36.739	361		С		СОМВІ	
-75.8888333	36.738	363	Н	Н	PHYS	PHYS	
-75.8898333	36.739	363	Н	Н	PHYS	PHYS	
-75.8808333	36.738	365	F	С	PHYS	СОМВІ	
-75.8818333	36.739	365	F	F	PHYS	PHYS	
-75.8725	36.738	367	С	С	COMBI	СОМВІ	
-75.8735	36.739	367		C	- COMBI	COMBI	
-75.8646667	36.738	369		C		COMBI	
-75.8656667	36.739	369	С	В	СОМВІ	PHYS	
-75.8916667	36.7333333	372	C	A	COMBI	BIO	
-75.8926667	36,7343333	372	c	c	COMBI	COMBI	
-75.8833333	36.73333333	374	F	D	PHYS	PHYS	
75.8843333	36.7343333	374	F			rnto	
75.8758333	36.73333333	376	F	F	PHYS	DUVO	
-75.8768333	36.7343333	376	F	F	PHYS	PHYS	
-75.8675	36.7333333	378	С		PHYS	PHYS	
		378			COMBI		
-75.8685 -75.8591667	36.7343333	380	C F	.	COMBI	BLD/O	
	36.7333333			F	PHYS	PHYS	
75.8601667	36.7343333	380	F	F	PHYS	PHYS	
75.8941667	36.73	381	С	С	COMBI	COMBI	
75.8951667	36.731	381	C	С	COMBI	COMBI	
75.8866667	36.73	383	H	Н	PHYS	PHYS	
75.8876667	36.731	383	H -	H	PHYS	PHYS	
75.8801667	36,731	385	F	<u> </u>	PHYS	PHYS	
75.8791667	36.73	385		F		PHYS	
75.8708333	36.73	387	D	С	PHYS	COMBI	
75.8718333	36.731	387	D	С	PHYS	COMBI	
75.8625	36.73	389	F	F	PHYS	PHYS	
-75.8635	36.731	389	F	F	PHYS	PHYS	
75.8933333	36.7258333	392	С	С	COMBI	COMBI	
75.8943333	36.7268333	392	С	С	СОМВІ	СОМВІ	
-75.885	36.7258333	394	Н	F	PHYS	PHYS	
-75.886	36.7268333	394	Н	1	PHYS	PHYS	
75.8766667	36.7258333	396	D	D	PHYS	PHYS	
75.8776667	36.7268333	396	D	D	PHYS	PHYS	
-75.865	36.7258333	398	С	Α	COMBI	BIO	
-75.866	36.7268333	398	С	Α	COMBI	BIO	
75.8566667	36.7258333	400	F	F	PHYS	PHYS	
75.8576667	36.7268333	400	F	F	PHYS	PHYS	

Table 11. Complete taxonomic list from 13 processed Smith-MacIntyre grab samples from June and November 1996 collections.

Nemerteans

Nemertean

Anemones

Anemones, Burrowing

Platyhelmenths

Flat worm

Stylochus sp.

Molluscs

Gastropods

Gastropod

Acteocina canaliculata

Epitonium multistriatum

Ĥaminoea solitaria

Mangelia cerina

Nassarius trivitattus

Polinices duplicatus

Pyramidella candida

Tectonatica pusilla

Turbonilla interupta

Bivalves

Bivalva

Brania clavata

Brania wellfleetensis

Brania sp.

Ensis directus

Lyonsia hyalina

Macoma tenta

Macoma sp.

Pandora trilineata

Spisula solidissima

Tellina agilis

Arthropods

Tanaids

Heterotanais sp.

Isopods

Isopod

Chiridotea tuftsi

Cirolana concharum

Ptilanthura tenuis

Cumaceans

Campylaspis sp.

Leucon americanus

Oxyurostylis smithi

Amphipods

Amphipod

Acanthohaustorius millsi

Ampelisca abdita

Ampelisca verrilli

Batea catharinensis

Bathyporeia porteri

Corophium tuberculatum

Lepidactylus dytiscus

Paraphoxus spinosus

Pontocrates sp.

Protohaustorius wigleyi

Synchelidium americanum

Trichophoxus epistomus

Unciola irrorata

Decapods

Decapod

Crangon septemspinosus

Pagurus longicarpus

Panopeus herbstii

Pinixia retinens

Annelids

Oligochaetes

Tubificidae

Polychaetes

Aglaophamus verrilli

Amastigos caperatus

Ampharete acutifrons

Ancistrosyllis hartmanae

Aphrodita hastata

Aricidea jeffreysii

Aricidea wassi

Asabellides oculata

Asychis elongata

Bhwania goodei

Capitomastus aciculatus

Clymenella mucosa

Clymenella torquata

Clymenella sp.

Drilonereis magna

Euclymene zonalis

Exogone dispar

Cl.

Glycera americana

Glycera dibranchiata

Glycera robustus

Harmathoe nodosa

Harmathoe sp.

Table . Completed.

Polychaetes (continued) Lumbrinereis acuta Lumbrinereis tenuis Magelona rosea Maldanopsis elongata Mangelia cerira Mediomastus ambiseta Mediomastus sp. Nephtys bucera Nephtys cryptomma Nephtys incisa Nephtys picta Notomastus hemipodus Notomastus sp. Notomustus latericeus Orbinia ornata Owenia fusiformis Paleanotus heteroseta Paraonis fulgeus Parapionosyllis manca Phyllodoce arenae Phyllodoce mucosa Pista palmata Podarke obseura Polydora ligni Prionospio malmgreni Protodorvillea egena Pseudeurythoe paucibranchiata Scolelepis squamata Sigalion arenicolae Sigambra tentaculata Spio setosa Spiochaetopterus oculatus Spiophanes bombyx Stauronereis rudolphi Sthenelais limicola

Phoronids

Phoronis spp.

Tharyx setigera

Echinoderms

Arbacia punctulata Cucumaria pulcherrima Mellita quinquiesperforata

Hemichordates Hemichordate

Cordates

Branchiostoma caribaeum

Taxa	Station Date	336 Jun	336 Nov	342 Jun	347 Jun	347 Nov	353 Jun	353 Nov	361 Jun	361 Nov	372 Jun	372 Nov	377 Jun	396 Nov	Total
Acanthohaustorius m	illsi	2	3	0	2	0	0	0	0	0	0	0	0	2	9
Acteocina canaliculate		$\bar{0}$	Õ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	1	ő	õ	1
Aglaophamus verrilli		Ŏ	1	18	ŏ	ŏ	ŏ	ŏ	21	42	21	34	2	ő	139
Amastigos caperatus		ŏ	Ô	0	ő	ŏ	ŏ	1	7	0	1	0	õ	ŏ	9
Ampelisca abdita		ŏ	ŏ	1	ŏ	ŏ	ŏ	Ô	ó	3	Ô	24	ő	ő	28
Ampelisca verrilli		Ŏ	Ŏ	Ô	ŏ	ŏ	ŏ	ŏ	4	26	ŏ	0	ŏ	ő	30
Ampharete acutifrons	•	ŏ	ŏ	ŏ	ŏ	- 0	2	ŏ	Ö	0	ŏ	ŏ	ő	ő	2
Amphipod	•	ŏ	ŏ	ŏ	ő	ŏ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	1	ő	1
Ancistrosyllis hartma	nae	ŏ	ŏ	ŏ	ő	ŏ	3	ő	ő	ŏ	ŏ	ŏ	1	ő	4
Anemones, Burrowin		ŏ	ŏ	ŏ	ŏ	ŏ	ő	ŏ	5	ŏ	ŏ	ŏ	0	ő	5
Aphrodita hastata	*5	ő	1	ő	1	ŏ	ŏ	ŏ	ő	ő	ő	ŏ	ő	ő	2
Arbacia punctulata		ő	Ô	ŏ	1	ŏ	ŏ	ŏ	ő	ŏ	ŏ	ŏ	ő	ő	1
Aricidea jeffreysii		1	ŏ	ŏ	5	1	4	ő	ő	ő	ő	ő	1	0	12
Aricidea yegyreysii Aricidea wassi		0	ő	ŏ	1	0	ō	ő	ő	ő	0	ő	4	0	5
Asabellides oculata		ő	ő	64	0	ő	4	ő	43	ő	11	Ö	1	0	123
Asychis elongata		ő	ő	0	Ö	ő	0	ő	0	0	0	7	1	0	
Batea catharinensis		0	0	1	ő	ő	0	ő	. 0	0	0	ó	0	0	8
Bathyporeia porteri		ő	0	0	0	ő	0	ő	0	0	0	0	0	1	.1 1
Bhwania goodei		0	0	0	ő	0	0	ő	1	0	0	0	0	0	1
Bivalva		1	0	0	4	0	1	2	0	0	0	0	0	0	1 0
Branchiostoma cariba	1011111	0	1	0	4	2	0	12	0	0	0	1	3		8
Brania clavata	æum	0	0	0	2	$\tilde{0}$	36	0	0	0	0	0	0	6 0	29
		1	0	0	$\tilde{0}$	0	0	0	0	0	0	0	-	0	38
Brania sp. Brania wellfleetensis		0	0	0	0	0	3	0	0	0	0	0	0	0	1
		0	0	0	0	0	0	0	2	0	0	0	1		4
Campylaspis sp.	4.	0	0	0	0	0	0	1	$\overset{2}{0}$	0			0	0	2
Capitomastus acicula	ius			0	2	0		0	0		0	0	0	0	1
Chiridotea tuftsi		0	0	0	0		0	0	-	0	0	0	0	0	2
Cirolana concharum		4	0	0	0	0	0		0	0	0	0	0	0	4
Clymenella mucosa		0				0	4	0	0	0	0	0	0	0	4
Clymenella sp.		0	0	1 5	0	0	0	0	0	0	0	0	0	0	1
Clymenella torquata	4	0	0	0	0	0	1	0	0	1	5	10	0	0	22
Corophium tubercula		0	0	0	0	0	0	0	0	0	7	0	0	0	7
Crangon septemspine		0	0	0	0	0	0	0	0	2	0	0	1	0	3
Cucumaria pulcherrin	ш	•	•	~	~	•	1	•	•	•	0	0	0	0	10
Decapod		0	0	0	0	0	0	0	0	0	0	7	0	3	10
Drilonereis magna Ensis directus		0	0	0	0		0		1 138	1	0	0	0	0	2
		0	0	0	0	0				5	0	6	0	0	149
Epitonium multistriat	um	0	0		0	0	0	1	0	0	0	1	0	0	2
Euclymene zonalis		0	0	0	0 13	0	0	0	0	1	0	0	0	0	1
Exogone dispar		0		0		0	1	0	0	0	0	0	0	0	14
Flat worm		0	0	0	0	0	0	0	2	0	0	0	0	0	2
Gastropod		0	0	0	0	0	0	1	0	0	0	0	0	0	1
Glycera americana		0	0	1	1	0	5	0	0	0	1	1	0	0	9
Glycera dibranchiata		1	0	0	0	0	0	3	0	0	0	0	1	0	5
Glycera robustus		0	0	0	0	0	1	0	0	0	0	0	0	0	1
Haminoea solitaria		0	0	0	0	1	0	0	0	0	0	1	1	0	3

Continued.

Taxa	Station Date	336 Jun	336 Nov	342 Jun	347 Jun	347 Nov	353 Jun	353 Nov	361 Jun	361 Nov	372 Jun	372 Nov	377 Jun	396 Nov	Total
Harmathoe nodosa		0	0	0	0	0	0	0	0	0	1	0	0	0	1
Harmathoe sp.		0	0	0	0	Ō	1	0	1	Ŏ	Ō	Ŏ	ŏ	ŏ	2
Hemichordate		0	0	0	0	0	1	0	0	0	Ō	Ŏ	Õ	Ŏ	1
Heterotanais sp.		1	0	0	43	0	0	0	0	0	0	Ō	Ŏ	Ŏ	44
Isopod		0	0	0	0	0	0	0	0	0	0	0	Ō	3	3
Lepidactylus dytiscus		0	0	0	0	2	0	2	0	0	0	0	0	Ō	4
Leucon americanus		0	0	0	1	0	0	0	0	0	0	0	0	Ō	1
Lumbrinereis acuta		1	0	-1	0	0	0	0	0	0	2	0	1	0	5
Lumbrinereis tenuis		0	0	0	0	0	2	9	0	1	0	0	0	0	12
Lyonsia hyalina		0	0	0	0	0	1	0	0	0	0	0	0	0	1
Macoma sp.		0	0	0	1	0	0	0	0	0	0	0	0	0	1
Macoma tenta		0	0	0	0	0	0	2	0	0	0	0	0	0	2
Magelona rosea		0	65	0	4	28	0	0	1	1	0	14	14	14	$14\overline{1}$
Maldanopsis elongata		0	0	6	0	0	0	0	0	0	7	0	0	0	13
Mangelia cerira		0	0	0	0	3	0	0	0	0	0	6	0	0	9
Mediomastus ambiseto	ı	0	0	2	0	0	0	0	3	0	0	0	0	0	. 5
Mediomastus sp.		0	0	0	0	0	0	0	0	0	0	1	0	0	1
Mellita quinquiesperfo	rata	0	1	0	15	1	24	0	0	0	3	0	102	1	147
Nassarius trivitattus		0	0	4	0	5	0	0	0	5	0	11	0	1	26
Nemertean		0	2	0	2	1	5	5	0	0	3	1	0	0	19
Nephtys bucera		2	0	0	0	2	0	1	0	0	0	0	0	1	6
Nephtys cryptomma		0	1	7	2	0	1	0	31	0	5	0	8	1	56
Nephtys incisa		0	0	0	0	0	0	0	0	1	0	0	0	0	1
Nephtys picta		0	0	2	1	0	0	0	1	9	5	1	15	2	36
Notomastus hemipodi	ıs	0	0	1	0	0	0	0	0	0	1	0	0	0	2
Notomastus latericeus		0	0	0	0	0	3	0	0	0	0	0	0	0	3
Notomastus sp.		0	0	0	0	0	0	0	0	0	0	0	1	0	1
Orbinia ornata		0	0	0	0	0	0	0	0	0	0	0	1	0	1
Owenia fusiformis		0	0	0	0	0	0	0	0	1	0	0	0	0	1
Oxyurostylis smithi		0	0	0	3	0	8	0	1	0	0	0	0	0	12
Pagurus longicarpus		0	0	0	2	1	2	1	0	3	0	9	3	0	21
Paleanotus heteroseta		0	0	0	0	0	2	11	0	0	0	2	0	0	15
Pandora trilineata		0	0	0	2	0	0	0	0	0	0	5	0	1	8
Panopeus herbstii		0	0	0	0	. 0	0	2	0	0	0	0	0	0	2
Paraonis fulgeus		0	0	0	0	0	0	0	0	0	0	0	2	0	2
Paraphoxus spinosus		0	0	0	0	0	0	0	0	0	0	0	2	0	2
Parapionosyllis manca	!	0	0	0	0	0	1	0	0	0	0	0	0	0	1
Phoronis spp.		0	0	1	0	0	0	0	9	0	0	7	0	0	17
Phyllodoce arenae		0	0	0	0	0	0	0	2	0	0	0	0	0	2
Phyllodoce mucosa		0	0	0	0	0	0	0	1	0	0	0	0	0	1
Pinixia cylindrica		0	0	0	0	0	3	0	0	0	0	0	0	0	3
Pinixia retinens		0	0	1	0	0	0	0	0	0	0	0	0	0	1
Pista palmata		0	0	0	0	0	1	0	0	0	0	2	0	0	3
Podarke obseura		0	0	0	0	0	0	1	0	0	0	0	0	0	1
Polinices duplicatus		0	0	0	1	0	0	0	0	0	0	0	0	0	1
Polydora ligni		0	0	12	0	0	3	0	7	0	3	0	0	0	25
Pontocrates sp.		0	0	0	2	0	0	0	0	0	0	0	0	0	2

Table .

Continued.

Taxa	Station Date	336 Jun	336 Nov	342 Jun	347 Jun	347 Nov	353 Jun	353 Nov	361 Iun	361 Nov	372 Jun	372 Nov	377 Jun	396 Nov	Total
* M* M*							<i>3</i> un	1101	Juli	1101	Juii	1101	J U11	1101	10ta1
Prionospio malmgren	i	0	0	45	0	0	0	0	50	3	50	9	0	1	158
Protodorvillea egena		0	0	0	0	0	3	11	0	0	0	0	0	0	14
Protohaustorius wigle	eyi	0	0	0	19	0	0	0	0	0	0	0	11	7	37
Pseudeurythoe paucib		a 0	0	0	0	0	1	0	0	0	0	0	0	0	1
Ptilanthura tenuis		0	0	0	0	0	0	0	0	1	0	0	0	0	1
Pyramidella candida		0	0	0	0	0	0	0	0	0	0	1	0	0	1
Scolelepis squamata		0	11	0	0	0	0	0	0	0	0	0	0	0	11
Sigalion arenicolae		0	0	0	0	0	0	0	0	0	0	0	0	1	1
Sigambra tentaculata		0	0	0	0	0	0	0	1	0	0	0	0	0	1
Spio setosa		0	0	1	0	0	6	0	3	0	0	0	0	0	10
Ŝpiochaetopterus ocu	latus	0	0	1	1	0	0	0	0	0	0	3	0	0	5
Śpiophanes bombyx		0	0	17	1	1	1	3	5	8	9	36	1	4	86
Špisula solidissima		1	0	0	0	0	0	0	0	0	0	0	0	0	1
Stauronereis rudolphi	<u>:</u>	0	0	0	0	0	1	0	0	0	0	0	0	0	1
Sthenelais limicola		0	0	0	0	0	0	0	0	1	0	0	0	0	1
Stylochus sp.		0	0	0	0	0	0	0	3	0	0	0	0	0	3
Synchelidium america	ınum	0	0	0	4	0	1	0	0	0	0	0	3	0	8
Tectonatica pusilla		0	0	0	0	0	0	0	.0	0	0	1	0	0	1
Tellina agilis		1	0	0	0	0	0	0	0	0	0	7	5	0	13
Tharyx setigera		0	0	0	5	0	0	0	0	0	0	0	4	0	9
Trichophoxus episton	nus	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Tubificidae		0	0	0	0	0	33	0	0	0	0	0	4	0	37
Turbonilla interupta		0	0	0	0	5	0	0	0	7	0	6	0	0	18
Unciola irrorata *		3	0	4	24	0	0	1	3	1	0	3	0	23	62

Grand Total 19 86 196 169 53 170 70 346 123 135 218 195 73

Table 13. Top ranked taxa, in terms of both occurrence and abundance from 13 of the Smith-MacIntyre grabs processed from 1996. Occur. is total occurrences out of 13 grabs and Abund. is summed abundance from the 13 grabs.

Taxa	Major Taxon	Occur.	Abund.
Spiophanes bombyx	Pl*	11	86
Magelona rosea	Pl	8	141
Unciola irrorata	Am	8	62
Nephtys cryptomma	Pl	8	56
Nephtys picta	Pl	8	36
Mellita quinquiesperforata	Ec	7	147
Aglaophamus verrilli	Pl	7	139
Branchiostoma caribaeum	Ch	7	29
Pagurus longicarpus	De	7	21
Nemertean	Ne	7	19
Prionospio malmgreni	Pl	6	158
Asabellides oculata	Pl	5	123
Ensis directus	$\mathbf{B}\mathbf{v}$	3	149
Heterotanais sp.	Ta	2	44

* Pl Polychaete
Am Amphipod
Ec Echnioderm
Ch Chordate
De Decapod
Ne Nemertean
Bv Bivalve
Ta Tanaid

Table 14. Summary of the number of species per major taxon. Data from the Norfolk Disposal Site, NDS, are from Dauer (1981) and represent total number of species from approximately 4.8 m² of bottom. The VA-B data are from the 13 grabs processed for species and represent totals for 1.3 m² of bottom.

Taxonomic Group	Number o VA-B	f Species NDS
Polychaetes	55	81
Amphipods	13	24 -
Bivalves	8	14
Gastropods	9	14
Cumaceans	3	5
Decapods	4	4
Isopods	3	3
Oligochaetes	3	2
Echinoderms	1	2
Other	8	6

Table 15. Percent of small and large wet weight biomass (Wt Wt %) and total individuals (No. %) summarized by major taxonomic group, from June and November 1996 Smith-MacIntyre grab data. The small category is the sum of 0.5, 1.0 and 2.0 mm sieve fractions. The large category is the sum of 3.35 and 6.3 mm sieve fractions.

Major		Wt V	Vt %	No	. %
Taxa	Date	Small	Large	Small	Large
Echnioderms	June	0.02	0.98	0.40	0.60
Sand Dollars	June	0.04	0.96	0.99	0.01
Crustaceans	June	0.04	0.96	0.63	0.37
Bivalves	June	0.09	0.91	0.50	0.50
Gastropods	June	0.10	0.90	0.69	0.31
Chordates	June	0.18	0.82	0.46	0.54
Annelids	June	0.30	0.70	0.76	0.24
Misc.	June	0.32	0.68	0.57	0.43
Anemones	June	0.66	0.34	0.80	0.20
Amphiods	June	0.81	0.19	0.97	0.03
All Taxa	June	0.17	0.83	0.86	0.14
Echnioderms	November	0.00	1.00	0.00	1.00
Sand Dollars	November	0.01	0.99	0.71	0.29
Bivalves	November	0.03	0.97	0.38	0.63
Gastropods	November	0.04	0.96	0.70	0.30
Crustaceans	November	0.09	0.91	0.85	0.15
Chordates	November	0.27	0.73	0.46	0.54
Misc.	November	0.28	0.72	0.81	0.19
Annelids	November	0.42	0.58	0.79	0.21
Anemones	November	0.72	0.28	0.83	0.17
Amphiods	November	0.87	0.13	0.97	0.03
All Taxa	November	0.20	0.80	0.84	0.16
Totals	June+Nov	0.19	0.81	0.85	0.15

Table 16.

Size class distribution of biomass (g wet wt) and individuals by major taxonomic groupings for June and November 1996 grab data.

	_												
	Seive	June					ember			June	Novem		
	Size		of 42 grabs	Sum			n of 39 grabs			Average per garb (0.1 m ²)			
	(mm)	No.	Wet Wt	% No	% wt	No.	Wet Wet	% No	% Wt	No. Wet Wt	No.	Wet Wt	
Amphiods	0.5	413	0.092	0.30	0.03	393	0.143	0.28	0.05	9.83 0.00	10.08	0.00	
	1	819	0.917	0.59	0.31	685	0.976	0.48	0.31	19.50 0.02	17.56		
	2	111	1.394	0.08	0.47	299	1.589	0.21	0.51	2.64 0.03	7.67	0.04	
	3.35	42	0.520	0.03	0.18	41	0.411	0.03	0.13	1.00 0.01	1.05		
	6.3	2	0.033	0.00	0.01	0	0.000	0.00	0.00	0.05 0.00	0.00		
	Totals	1387	2.956			1418	3.119			33.02 0.07	36.36		
Annelids	0.5	997	0.716	0.25	0.01	826	20.157	0.23	0.18	23.74 0.02	21.18	0.52	
	1	1134	2.843	0.28	0.05	1241	7.910	0.35	0.07	27.00 0.07	31.82		
	2	924	12.970	0.23	0.23	740	17.404	0.21	0.16	22.00 0.31	18.97		
	3.35	916	29.641	0.23	0.53	559	33.032	0.16	0.30	21.81 0.71	14.33	0.85	
	6.3	66	9.276	0.02	0.17	196		0.06	0.28	1.57 0.22	5.03	0.79	
	Totals	4037	55.446				109.277		5. 2 5	96.12 1.32	91.33		
Anemones	s 0.5	0	0.000	0.00	0.00	0	0.000	0.00	0.00	0.00 0.00	0.00	0.00	
	1	0.	0.000	0.00	0.00	2	0.011	0.17	0.09	0.00 0.00	0.05		
	2	12	0.129	0.80	0.66	8	0.081	0.67	0.64	0.29 0.00	0.21		
	3.35	3	0.066	0.20	0.34	2	0.035	0.17	0.28	0.07 0.00	0.05	0.00	
	6.3	0	0.000	0.00	0.00	$\bar{0}$	0.000	0.00	0.00	0.00 0.00	0.00		
	Totals	15	0.195			12	0.127		0.00	0.36 0.00	0.31		
Bivalves	0.5	32	0.022	0.09	0.00	4	0.004	0.02	0.00	0.76 0.00	0.10	0.00	
	1	44	0.166	0.13	0.01	26	0.067	0.14	0.00	1.05 0.00	0.67	0.00	
	2	93	2.701	0.27	0.08	39	1.864	0.21	0.03	2.21 0.06	1.00	0.05	
	3.35	150	8.832	0.44	0.27	24	2.426	0.13	0.04	3.57 0.21	0.62		
	6.3	22	20.853	0.06	0.64	91	56.762	0.49	0.93	0.52 0.50	2.33	1.46	
	Totals	341	32.574			184	61.123	22	3.20	8.12 0.78	4.72	1.57	

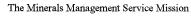

Table 16.	Continued.											
	Seive June Size Sum of 42 grabs			November Sum of 39 grabs					June November Average per garb (0.1 m ²)			
	(mm)	No.	Wet Wt	% No	% wt	No.		% No	% Wt	No. Wet Wt	No.	Wet Wt
Chordates	0.5	0	0.000		0.00	0	0.000	0.00	0.00	0.00 0.00	0.00	0.00
	1	4	0.035	0.05	0.01	6	0.090	0.05	0.02	0.10 0.00	0.15	0.00
	2	35	0.387	0.41	0.16	51	1.324	0.41	0.26	0.83 0.01	1.31	0.03
	3.35	33	0.691	0.39	0.29	43	2.302	0.35	0.44	0.79 0.02	1.10	0.06
	6.3	13	1.250	0.15	0.53	24	1.459	0.19	0.28	0.31 0.03	0.62	0.04
Totals		85	2.363			124	5.175			2.02 0.06	3.18	0.13
Crustaceans	0.5	35	0.015	0.19	0.00	131	0.031	0.29	0.00	0.83 0.00	3.36	0.00
	1	45	0.063	0.25	0.01	173	0.238	0.39	0.03	1.07 0.00	4.44	0.01
	2	34	0.183	0.19	0.03	76	0.498	0.17	0.06	0.81 0.00	1.95	0.01
	3.35	44	1.706	0.24	0.26	46	2.154	0.10	0.26	1.05 0.04	1.18	0.06
	6.3	22	4.708	0.12	0.71	22	5.423	0.05	0.65	0.52 0.11	0.56	0.14
To	tals	180	6.675			448	8.344			4.29 0.16	11.49	0.21
Echnioderms	0.5	1	0.001	0.20	0.00	0	0.000	0.00	0.00	0.02 0.00	0.00	0.00
	1	1	0.006	0.20	0.02	0	0.000	0.00	0.00	0.02 0.00	0.00	0.00
	2	0	0.000	0.00	0.00	0	0.000	0.00	0.00	0.00 0.00	0.00	0.00
	3.35	2	0.051	0.40	0.16	3	0.227	0.60	0.26	0.05 0.00	0.08	0.01
	6.3	1	0.256	0.20	0.82	2	0.645	0.40	0.74	0.02 0.01	0.05	0.02
To	tals	5	0.314			5	0.872			0.12 0.01	0.13	0.02
Gastropods	0.5	11	0.018	0.06	0.00	18	0.071	0.06	0.00	0.26 0.00	0.46	0.00
	1	76	0.305	0.44	0.03	76	0.743	0.25	0.01	1.81 0.01	1.95	0.02
	2	32	0.635	0.19	0.06	120	2.924	0.39	0.03	0.76 0.02	3.08	0.07
	3.35	47	6.513	0.27	0.66	52	4.712	0.17	0.06	1.12 0.16	1.33	0.12
	6.3	6	2.450	0.03	0.25	38	75.698	0.13	0.90	0.14 0.06	0.97	1.94
То	tals	172	9.921			304	84.148			4.10 0.24	7.79	2.16

Table 16.	Conti	nued.											
	Seive Size (mm)		of 42 grabs Wet Wt	November Sum of 39 grabs No. Wet Wet % No % Wt					% Wt	June November Average per garb (0.1 m²) No. Wet Wt No. Wet Wt			
Misc.	0.5 1 2 3.35 6.3 otals	1 1 2 3 0 7	0.001 0.018 0.016 0.074 0.000 0.109	0.14 0.14 0.29 0.43 0.00	0.01 0.17 0.15 0.68 0.00	26 14 35 12 6 93	0.060 0.110 0.359 0.953 0.405 1.887	0.28 0.15 0.38 0.13 0.06	0.03 0.06 0.19 0.51 0.21	0.02 0.00 0.02 0.00 0.05 0.00 0.07 0.00 0.00 0.00 0.17 0.00	0.67 0.36 0.90 0.31 0.15 2.38	0.00 0.00 0.01 0.02 0.01 0.05	
Sand Doll.	0.5 1 2 3.35 6.3 Totals	406 1905 94 10 9 2424	0.135 2.250 0.307 0.187 61.570 64.449	0.17 0.79 0.04 0.00 0.00	0.00 0.03 0.00 0.00 0.96	0 10 58 10 18 96	0.000 0.019 0.458 0.280 32.245 33.002	0.00 0.10 0.60 0.10 0.19	0.00 0.00 0.01 0.01 0.98	9.67 0.00 45.36 0.05 2.24 0.01 0.24 0.00 0.21 1.47 57.71 1.53	0.00 0.26 1.49 0.26 0.46 2.46	0.00 0.00 0.01 0.01 0.83 0.85	
Totals	0.5 1 2 3.35 6.3 otals	2274 4803 1414 1248 121 9860	1.077 7.457 19.933 47.095 95.721 171.283	0.23 0.49 0.14 0.13 0.01	0.01 0.04 0.12 0.27 0.56		20.578 10.902 27.592 44.789 197.988 301.849	0.23 0.38 0.23 0.11 0.05	0.07 0.04 0.09 0.15 0.66	54.14 0.03 114.36 0.18 33.67 0.47 29.71 1.12 2.88 2.28 234.76 4.08	42.56 70.38 42.28 20.18 9.62 185.03	0.53 0.28 0.71 1.15 5.08 7.74	
June+Nov	0.5 1 2 3.35 6.3 TAL	7548 3063 2035 496	21.655 18.359 47.525 91.884 293.709 473.132	0.23 0.44 0.18 0.12 0.03	0.05 0.04 0.10 0.19 0.62	93 37 25 6	.570.27 .190.23 .810.59 .121.13 .123.63 .815.84						

The Department of the Interior

As the Nations's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources, protecting our fish, wildlife, and biological diversity, preserving the environmental and cultural values of our national parks and historic places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. Administration.

As a bureau of the Department of the Interior, the Minerals Management Service's (MMS) primary responsibilities are to manage the mineral resources located on the Nations's Outer Continental Shelf (OCS), collect revenue from the Federal OCS and onshore federal and Indian lands, and distribute those revenues.

Moreover, in working to meet its responsibilities, the Offshore Minerals Management Program administers the OCS competitive leasing program and oversees the safe and environmentally sound exploration and production of our Nation's offshore natural gas, oil and other mineral resources. The MMS Royalty Management Program meets its responsibilities by entrusting the efficient, timely and accurate collection and distribution of revenue from mineral leasing and production due to Indian tribes and allottees, States and the U.S. Treasury

the MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being responsive to the public's concerns and interests by maintaining a dialog with all potentially affected parties and (2) carrying out its programs with an emphasis on working to enhance the quality of life for all Americans by lending MMS assistance and expertise to economic development and environmental protection.